
The Observer Design Pattern

Hui Chen a

aCUNY Brooklyn College, Brooklyn, NY, USA

April 10, 2025

H. Chen (CUNY-BC) Observer April 10, 2025 1 / 30

Outline

1 Background

2 Observer Pattern
Motivation
Observer Pattern

3 Using Observer Pattern
1st Iteration
2nd Iteration
3rd Iteration
3rd Iteration
4th Iteration

4 References

H. Chen (CUNY-BC) Observer April 10, 2025 2 / 30

Background

Outline

1 Background

2 Observer Pattern
Motivation
Observer Pattern

3 Using Observer Pattern
1st Iteration
2nd Iteration
3rd Iteration
3rd Iteration
4th Iteration

4 References

H. Chen (CUNY-BC) Observer April 10, 2025 3 / 30

Background

Software Design

▶ Design starts mostly from/with requirements – evolving mostly from
functionalities and other non-functional characteristics
▶ In the waterfall model Design generally occurs after Requirements
▶ In agile, design is performed during in each iteration

▶ To answer: How is the software solution going to be structured?
▶ What are the main components – (functional composition) often

directly from requirements’ functionalities (e.g., use cases, user stories,
scenarios)

▶ How are these components related? – Possibly re-organize the
components (composition/decomposition)

▶ Two main levels of design:
▶ Architectural (high level) design
▶ Detailed design
▶ Different design concerns at different abstraction levels (e.g. classes vs.

modules vs. entire system)
▶ How should we depict design – what notation/language?

H. Chen (CUNY-BC) Observer April 10, 2025 4 / 30

Background

Review: High-level and Low-level Designs

Architectural design (high-level design) patterns and styles
▶ MVC, Layered, Pipeline, Client-Server, SOA, . . .

Detailed design (low-level design)
▶ Functional decomposition, database design, Object-Oriented design,

user-interface design, . . .

▶ Object-Oriented Design and UML – focused on modeling
▶ To discuss more about Object-Oriented design

H. Chen (CUNY-BC) Observer April 10, 2025 5 / 30

Observer Pattern

Outline

1 Background

2 Observer Pattern
Motivation
Observer Pattern

3 Using Observer Pattern
1st Iteration
2nd Iteration
3rd Iteration
3rd Iteration
4th Iteration

4 References

H. Chen (CUNY-BC) Observer April 10, 2025 6 / 30

Observer Pattern

Inverse of Control

Source: Module 6 by Martin Robillard
▶ Inverse of control
▶ The observer pattern

H. Chen (CUNY-BC) Observer April 10, 2025 7 / 30

https://github.com/prmr/SoftwareDesign/blob/master/modules/Module-06.md

Observer Pattern Motivation

Motivation: Requirement of an Application

Consider this application which a number is selected/entered/showed in 3
different ways

H. Chen (CUNY-BC) Observer April 10, 2025 8 / 30

Observer Pattern Motivation

Motivation: Design of the Application

A way to implement this application has complete pairwise dependencies

Any critiques?

H. Chen (CUNY-BC) Observer April 10, 2025 9 / 30

Observer Pattern Motivation

Critiques

▶ High coupling: Each panel explicitly depends on many other panels.
▶ Complexity: Complex idiosyncratic program logic is required to keep

the different panels consistent.
▶ Low Extensibility: To add or remove a panel, it is necessary to modify

all other panels.

H. Chen (CUNY-BC) Observer April 10, 2025 10 / 30

Observer Pattern Observer Pattern

Redesign of the Application

Let’s consider this improved design using the Observer Design Pattern,

The Observer Design Pattern: store state of interest in specialized objects,
and to allow other objects to observe this state.

Why is it better?

H. Chen (CUNY-BC) Observer April 10, 2025 11 / 30

Observer Pattern Observer Pattern

Redesign of the Application

▶ The model can be used without any observer;
▶ The model is aware that it can be observed, but its implementation

does not depend on any concrete observer class.
▶ It is possible to register and de-register observers at run-time.

H. Chen (CUNY-BC) Observer April 10, 2025 12 / 30

Observer Pattern Observer Pattern

Inverse of Control and the Observer

How do the observers learn that there is new information in the model
that they need to know about?

H. Chen (CUNY-BC) Observer April 10, 2025 13 / 30

Observer Pattern Observer Pattern

Inverse of Control and the Observer

▶ The model cycles through the observers and calls a “callback”
method (defined on the Observer interface) on them.

▶ Inversion of control: the observer do not call a method on the model
even though it is the observer that “makes” the change.
▶ Also called the “Hollywood Principle” (“don’t call us, we’ll call you”).

H. Chen (CUNY-BC) Observer April 10, 2025 14 / 30

Observer Pattern Observer Pattern

Cycling Through Callbacks

Essentially, the idea is as follows,
1 class Model {
2 List <Observer > observerList ;
3 // ...
4 void setNumber () {
5 for(Observer observer : observerList) {
6 if (observer == null) continue ;
7 observer . event1 ();
8 observer . event2 (data);
9 observer . event3 (this);

10 }
11 }
12 }

Alternative, use the event-driven framework – next slide

H. Chen (CUNY-BC) Observer April 10, 2025 15 / 30

Observer Pattern Observer Pattern

Cycling Through Callbacks

Alternative, use the event-driven framework,
▶ the model acts as the “event source”.
▶ the model generates a series of “events” that correspond to different

state changes, and
▶ other objects are in charge of reacting to these events – calling some

methods (callbacks) by the framework.

H. Chen (CUNY-BC) Observer April 10, 2025 16 / 30

Observer Pattern Observer Pattern

The Observer Design Pattern: Summary

H. Chen (CUNY-BC) Observer April 10, 2025 17 / 30

Using Observer Pattern

Outline

1 Background

2 Observer Pattern
Motivation
Observer Pattern

3 Using Observer Pattern
1st Iteration
2nd Iteration
3rd Iteration
3rd Iteration
4th Iteration

4 References

H. Chen (CUNY-BC) Observer April 10, 2025 18 / 30

Using Observer Pattern

Example Application

Let’s consider to develop an inventory system capable of keeping track of
electronic equipment.
▶ An Item of equipment records a serial number (int) and production

year (int).
▶ An Inventory object aggregates a bunch of Items. Various entities are

interested in changes to the state of the Inventory.
▶ Clients can add or remove Items from the Inventory at any time.

For example,
▶ it should be possible to show the items in the Inventory in a ListView.
▶ It should also be possible to view a PieChart representing the

proportion of Items in the Inventory for each production year (e.g.,
2004=25%; 2005=30%, etc.).

▶ Views should be updated whenever items are added or removed from
the Inventory.

H. Chen (CUNY-BC) Observer April 10, 2025 19 / 30

Using Observer Pattern 1st Iteration

Basic Set of Classes

At a first glance, we need the following classes

H. Chen (CUNY-BC) Observer April 10, 2025 20 / 30

Using Observer Pattern 2nd Iteration

Instantiating a Basic Observer Pattern

Design decision: the object containing the observable state would be
instances of Inventory, and the objects observing this state would be
PieChart and ListView.

H. Chen (CUNY-BC) Observer April 10, 2025 21 / 30

Using Observer Pattern 3rd Iteration

Designing the Callbacks

There are only two possible events in this simple problem – adding and
removing items

This leads to two design choices for the callbacks:
1. A single callback that indicates that an item was added or removed;
2. One callback for items added and one for items removed.

which one should we choose?

H. Chen (CUNY-BC) Observer April 10, 2025 22 / 30

Using Observer Pattern 3rd Iteration

Designing the Callbacks

Let’s evaluate these two design choices.
1. Option 1

▶ It would end up being called something like itemAddedOrRemoved
▶ The concrete observer would have to check a boolean flag to determine

whether it is add or remove.
▶ Therefore, it clearly has a bad smell of not being not quite right.

2. Option 2 – has none of these issues – choose this Option.
The next question is how to tell observers which item has been added or
removed.
▶ Using the “pull” strategy, i.e.,

▶ include a reference to the Inventory that changed as part of the
callback, and

▶ add a method getLastItemAddedOrRemoved()

H. Chen (CUNY-BC) Observer April 10, 2025 23 / 30

Using Observer Pattern 3rd Iteration

Designing the Callbacks

Any critiques?

H. Chen (CUNY-BC) Observer April 10, 2025 24 / 30

Using Observer Pattern 4th Iteration

Designing the Callbacks

Does this look clumsy to you?
▶ getLastItemAddedOrRemoved()?
▶ itemAdded(Inventory)?
▶ itemRemoved(Inventory)?

H. Chen (CUNY-BC) Observer April 10, 2025 25 / 30

Using Observer Pattern 4th Iteration

Designing the Callbacks

Get rid of getLastItemAddedOrRemoved() by redesigning itemAdded()
and itemRemoved()

H. Chen (CUNY-BC) Observer April 10, 2025 26 / 30

Using Observer Pattern 4th Iteration

Designing the Callbacks

Assuming two observers (one of each type) are registered with the
inventory, a sequence that illustrates an item being added is thus:

H. Chen (CUNY-BC) Observer April 10, 2025 27 / 30

Using Observer Pattern 4th Iteration

Summary and Questions?

▶ The Observer design pattern (using the Inversion of Control design
strategy) is frequently used for GUI applications

▶ Questions?

Let’s do an exercise ...

H. Chen (CUNY-BC) Observer April 10, 2025 28 / 30

References

Outline

1 Background

2 Observer Pattern
Motivation
Observer Pattern

3 Using Observer Pattern
1st Iteration
2nd Iteration
3rd Iteration
3rd Iteration
4th Iteration

4 References

H. Chen (CUNY-BC) Observer April 10, 2025 29 / 30

References

“Introduction to Software Design with Java” by Martin P. Robillard
“Engineering Software as a Service” by Armando Fox and David Patterson
(2nd Edition)
“Essentials of Software Engineering” by Frank Tsui, Orlando Karam, and
Barbara Bernal(4th Edition)

H. Chen (CUNY-BC) Observer April 10, 2025 30 / 30

https://link.springer.com/book/10.1007/978-3-030-24094-3

	Background
	Observer Pattern
	Motivation
	Observer Pattern

	Using Observer Pattern
	1st Iteration
	2nd Iteration
	3rd Iteration
	3rd Iteration
	4th Iteration

	References

