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Background

Software Design

▶ Design starts mostly from/with requirements – evolving mostly from
functionalities and other non-functional characteristics
▶ In the waterfall model Design generally occurs after Requirements
▶ In agile, design is performed during in each iteration

▶ To answer: How is the software solution going to be structured?
▶ What are the main components – (functional composition) often

directly from requirements’ functionalities (e.g., use cases, user stories,
scenarios)

▶ How are these components related? – Possibly re-organize the
components (composition/decomposition)

▶ Two main levels of design:
▶ Architectural (high level) design
▶ Detailed design
▶ Different design concerns at different abstraction levels (e.g. classes vs.

modules vs. entire system)
▶ How should we depict design – what notation/language?
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Background

Review: High-level and Low-level Designs

Architectural design (high-level design) patterns and styles
▶ MVC, Layered, Pipeline, Client-Server, SOA, . . .

Detailed design (low-level design)
▶ Functional decomposition, database design, Object-Oriented design,

user-interface design, . . .

▶ Object-Oriented Design and UML – focused on modeling
▶ To discuss more about Object-Oriented design

H. Chen (CUNY-BC) Observer April 10, 2025 5 / 30



Observer Pattern

Outline

1 Background

2 Observer Pattern
Motivation
Observer Pattern

3 Using Observer Pattern
1st Iteration
2nd Iteration
3rd Iteration
3rd Iteration
4th Iteration

4 References

H. Chen (CUNY-BC) Observer April 10, 2025 6 / 30



Observer Pattern

Inverse of Control

Source: Module 6 by Martin Robillard
▶ Inverse of control
▶ The observer pattern
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Observer Pattern Motivation

Motivation: Requirement of an Application

Consider this application which a number is selected/entered/showed in 3
different ways
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Observer Pattern Motivation

Motivation: Design of the Application

A way to implement this application has complete pairwise dependencies

Any critiques?
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Observer Pattern Motivation

Critiques

▶ High coupling: Each panel explicitly depends on many other panels.
▶ Complexity: Complex idiosyncratic program logic is required to keep

the different panels consistent.
▶ Low Extensibility: To add or remove a panel, it is necessary to modify

all other panels.
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Observer Pattern Observer Pattern

Redesign of the Application

Let’s consider this improved design using the Observer Design Pattern,

The Observer Design Pattern: store state of interest in specialized objects,
and to allow other objects to observe this state.

Why is it better?
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Observer Pattern Observer Pattern

Redesign of the Application

▶ The model can be used without any observer;
▶ The model is aware that it can be observed, but its implementation

does not depend on any concrete observer class.
▶ It is possible to register and de-register observers at run-time.
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Observer Pattern Observer Pattern

Inverse of Control and the Observer

How do the observers learn that there is new information in the model
that they need to know about?
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Observer Pattern Observer Pattern

Inverse of Control and the Observer

▶ The model cycles through the observers and calls a “callback”
method (defined on the Observer interface) on them.

▶ Inversion of control: the observer do not call a method on the model
even though it is the observer that “makes” the change.
▶ Also called the “Hollywood Principle” (“don’t call us, we’ll call you”).
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Observer Pattern Observer Pattern

Cycling Through Callbacks

Essentially, the idea is as follows,
1 class Model {
2 List <Observer > observerList ;
3 // ...
4 void setNumber () {
5 for( Observer observer : observerList ) {
6 if ( observer == null ) continue ;
7 observer . event1 ();
8 observer . event2 (data);
9 observer . event3 ( this );

10 }
11 }
12 }

Alternative, use the event-driven framework – next slide
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Observer Pattern Observer Pattern

Cycling Through Callbacks

Alternative, use the event-driven framework,
▶ the model acts as the “event source”.
▶ the model generates a series of “events” that correspond to different

state changes, and
▶ other objects are in charge of reacting to these events – calling some

methods (callbacks) by the framework.
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Observer Pattern Observer Pattern

The Observer Design Pattern: Summary
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Using Observer Pattern

Example Application

Let’s consider to develop an inventory system capable of keeping track of
electronic equipment.
▶ An Item of equipment records a serial number (int) and production

year (int).
▶ An Inventory object aggregates a bunch of Items. Various entities are

interested in changes to the state of the Inventory.
▶ Clients can add or remove Items from the Inventory at any time.

For example,
▶ it should be possible to show the items in the Inventory in a ListView.
▶ It should also be possible to view a PieChart representing the

proportion of Items in the Inventory for each production year (e.g.,
2004=25%; 2005=30%, etc.).

▶ Views should be updated whenever items are added or removed from
the Inventory.
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Using Observer Pattern 1st Iteration

Basic Set of Classes

At a first glance, we need the following classes
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Using Observer Pattern 2nd Iteration

Instantiating a Basic Observer Pattern

Design decision: the object containing the observable state would be
instances of Inventory, and the objects observing this state would be
PieChart and ListView.
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Using Observer Pattern 3rd Iteration

Designing the Callbacks

There are only two possible events in this simple problem – adding and
removing items

This leads to two design choices for the callbacks:
1. A single callback that indicates that an item was added or removed;
2. One callback for items added and one for items removed.

which one should we choose?
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Using Observer Pattern 3rd Iteration

Designing the Callbacks

Let’s evaluate these two design choices.
1. Option 1

▶ It would end up being called something like itemAddedOrRemoved
▶ The concrete observer would have to check a boolean flag to determine

whether it is add or remove.
▶ Therefore, it clearly has a bad smell of not being not quite right.

2. Option 2 – has none of these issues – choose this Option.
The next question is how to tell observers which item has been added or
removed.
▶ Using the “pull” strategy, i.e.,

▶ include a reference to the Inventory that changed as part of the
callback, and

▶ add a method getLastItemAddedOrRemoved()
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Using Observer Pattern 3rd Iteration

Designing the Callbacks

Any critiques?
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Using Observer Pattern 4th Iteration

Designing the Callbacks

Does this look clumsy to you?
▶ getLastItemAddedOrRemoved()?
▶ itemAdded(Inventory)?
▶ itemRemoved(Inventory)?
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Using Observer Pattern 4th Iteration

Designing the Callbacks

Get rid of getLastItemAddedOrRemoved() by redesigning itemAdded()
and itemRemoved()
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Using Observer Pattern 4th Iteration

Designing the Callbacks

Assuming two observers (one of each type) are registered with the
inventory, a sequence that illustrates an item being added is thus:
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Using Observer Pattern 4th Iteration

Summary and Questions?

▶ The Observer design pattern (using the Inversion of Control design
strategy) is frequently used for GUI applications

▶ Questions?

Let’s do an exercise ...
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