
Software Quality Control and Testing

Hui Chen a

aCUNY Brooklyn College, Brooklyn, NY, USA

March 9, 2023

H. Chen (CUNY-BC) Testing March 9, 2023 1 / 53

Outline
1 Review for Last Class
2 Software Quality
3 Software Testing

Why?
What?
Who?
How?

4 Unit/Functional Testing
Test Coverage
Strategies of Running Tests

5 Inspections and Reviews
6 Formal Methods
7 Static Analysis
8 Summary
9 References

H. Chen (CUNY-BC) Testing March 9, 2023 2 / 53

Review for Last Class

Outline
1 Review for Last Class
2 Software Quality
3 Software Testing

Why?
What?
Who?
How?

4 Unit/Functional Testing
Test Coverage
Strategies of Running Tests

5 Inspections and Reviews
6 Formal Methods
7 Static Analysis
8 Summary
9 References

H. Chen (CUNY-BC) Testing March 9, 2023 3 / 53

Review for Last Class

Topics in Last Class

1. Overview of requirement engineering
2. Agile vs. traditional (plan & document)
3. An agile approach of requirement analysis

▶ Behavior-Driven Development (BDD)
▶ UI sketches and storyboards

H. Chen (CUNY-BC) Testing March 9, 2023 4 / 53

Software Quality

Outline
1 Review for Last Class
2 Software Quality
3 Software Testing

Why?
What?
Who?
How?

4 Unit/Functional Testing
Test Coverage
Strategies of Running Tests

5 Inspections and Reviews
6 Formal Methods
7 Static Analysis
8 Summary
9 References

H. Chen (CUNY-BC) Testing March 9, 2023 5 / 53

Software Quality

What is Software Quality?

▶ Conforms to requirements – via validation.
▶ Did we build the right thing? – Is this what the customer wants, and is

the specification correct?
▶ Fit to use – via verification.

▶ Did we build the thing right? – Did we meet the specification?

▶ Quality assurance refers to all activities designed to measure and
improve quality in a product, including the whole process, training,
and preparation of the team.

▶ Quality control usually refers to activities designed to verify the
quality of the product, detect faults or defects, and ensure that the
defects are fixed prior to release.

H. Chen (CUNY-BC) Testing March 9, 2023 6 / 53

Software Quality

“Error-Detection” Techniques

▶ Testing: executing program in a controlled environment and
“verifying/validating” output.

▶ Inspections and reviews.
▶ Static analysis detects “error-prone conditions.”
▶ Formal methods (proving software correct).

▶ Limited use in safety-critical and security-critical applications

H. Chen (CUNY-BC) Testing March 9, 2023 7 / 53

Software Quality

Faults and Failures

▶ Error: a mistake made by a programmer or software engineer that
caused the fault, which in turn may cause a failure

▶ Fault (defect, bug): condition that may cause a failure in the system
▶ Failure (problem): inability of system to perform a function according

to its spec due to some fault
▶ Fault or failure/problem severity (based on consequences)
▶ Fault or failure/problem priority (based on importance of developing a

fix, which is in turn based on severity)

H. Chen (CUNY-BC) Testing March 9, 2023 8 / 53

Software Quality

Faults and Failures

Requirement Fault
(Requirement Defect)

Design Fault
(Design Defect)

Software
Error

Software
Failure

Observed
Symptoms

Observed
Misbehavior

causes

causes
triggers

yields evidenced by

(a) Relations of software defects (faults),
errors, and failures.

1 # include <stdlib .h>
2 enum { BUFFER_SIZE = 32 };
3
4 int f(void) {
5 char * text_buffer = (char *) malloc (

BUFFER_SIZE);
6 if (text_buffer == NULL) {
7 return -1;
8 }
9

10 return 0;
11 }

(b) A code snippet showing a memory
allocation defect seicertcstandard

Figure: Relationship of defect, error, and failure and an example of defective code

H. Chen (CUNY-BC) Testing March 9, 2023 9 / 53

Software Testing

Outline
1 Review for Last Class
2 Software Quality
3 Software Testing

Why?
What?
Who?
How?

4 Unit/Functional Testing
Test Coverage
Strategies of Running Tests

5 Inspections and Reviews
6 Formal Methods
7 Static Analysis
8 Summary
9 References

H. Chen (CUNY-BC) Testing March 9, 2023 10 / 53

Software Testing

Testing

▶ Activity performed for:
▶ Evaluating product quality
▶ Improving products by identifying defects and having them fixed prior

to software release
▶ Dynamic (running-program) verification of program’s behavior on a

finite set of test cases selected from execution domain.
▶ Exhaustive testing infeasible
▶ Divide and conquer – perform different tests at different levels of the

software Upper level doesn’t redo tests of lower level

H. Chen (CUNY-BC) Testing March 9, 2023 11 / 53

Software Testing

Limitation of Testing

“Testing can never show the ABSENCE of errors in software, only their
PRESENCE” — by Edsger Dijkstra
▶ Testing can NOT prove product works 100%—even though we use

testing to demonstrate that parts of the software works
▶ Exhaustive testing infeasible

H. Chen (CUNY-BC) Testing March 9, 2023 12 / 53

Software Testing

Aspects of Testing

▶ Why test?
▶ What is tested?
▶ Who tests?
▶ How (are test cases designed)?

H. Chen (CUNY-BC) Testing March 9, 2023 13 / 53

Software Testing Why?

Why Test?

▶ Quality control measure (developers)
▶ Evaluating product quality
▶ Improving products by identifying defects and having them fixed prior

to software release
▶ Acceptance (customers)

▶ System or Acceptance Test: integrated program meets users’
specifications

▶ We have mentioned these before. In what context?
▶ Conformance (standards, laws, etc.)
▶ Configuration (user vs. developers.)
▶ Performance, stress, security, etc.

H. Chen (CUNY-BC) Testing March 9, 2023 14 / 53

Software Testing What?

What is Tested (Type of Tests)

▶ User interface testing
▶ Integration/system testing: interfaces between units have consistent

assumptions, communicate correctly
▶ Module or Functional Test: within individual units
▶ Unit testing : single method does what was expected

Progression of Testing
▶ Unit tests → Functional tests → Component tests →

System/regression tests

H. Chen (CUNY-BC) Testing March 9, 2023 15 / 53

Software Testing Who?

Who Tests Software?

▶ Developers
▶ Testers/Requirement Analysts
▶ Users

In agile model, we don’t usually have specialized testers, but some
organizations still have such teams

H. Chen (CUNY-BC) Testing March 9, 2023 16 / 53

Software Testing How?

Testing Methods

▶ Glass-box (aka white-box) testing – Tester understands the details of
system to be tested. When, for instance, the developer is testing the
code.

▶ Black-box testing – Tester does NOT use (or understand) the details
of system to be tested.

H. Chen (CUNY-BC) Testing March 9, 2023 17 / 53

Software Testing How?

How to Test?

How (test cases designed)?
▶ Intuition
▶ Specification based (black box)
▶ Code based (white box)
▶ Existing cases (regression)

H. Chen (CUNY-BC) Testing March 9, 2023 18 / 53

Software Testing How?

White-box vs. Black-box

▶ Goal of testing – to “break” it
▶ Testing goal runs counter to the goals of software development

activities
▶ Hard for a developer to get in the proper mindset

Argument for white-box testing
▶ Knowing what’s inside an interface (or class) will enable you to test it

more thoroughly
Argument against white-box testing:
▶ You’ll have the same blind spots in testing the class that you had in

writing it

H. Chen (CUNY-BC) Testing March 9, 2023 19 / 53

Software Testing How?

Example Testing Methods

▶ Equivalence Class Partitioning
▶ Boundary Value Analysis
▶ Path Analysis
▶ Combinations of Conditions

H. Chen (CUNY-BC) Testing March 9, 2023 20 / 53

Software Testing How?

Data Partition Testing

Aim to test using examples different groups on inputs, e.g., Equivalence
Class Partitioning
▶ Divide the input into several groups, deemed “equivalent” for

purposes of finding errors.
▶ Pick one “representative” for each class used for testing.
▶ Equivalence classes determined by req./design specifications and

some intuition

Table: Example. Pick “larger” of two integers and ...

Class Representative

Low -5
0 - 12 6
13 - 19 15
20 - 25 30
36 - 120 60
High 160

Lessen duplication and complete coverage.H. Chen (CUNY-BC) Testing March 9, 2023 21 / 53

Software Testing How?

Boundary Value Analysis

▶ A black-box technique
▶ Experiences show that “boundaries” are error-prone.
▶ Do equivalence-class partitioning; add test cases for boundaries (at

boundary, outside, inside).
▶ Reduced cases: consider boundary as falling between numbers.
▶ If boundary is at 12: normal: 11, 12, 13; reduced: 12, 13 (boundary 12

and 13)
▶ Large number of cases (∼3 per boundary).
▶ Good for “ordinal values. ”

H. Chen (CUNY-BC) Testing March 9, 2023 22 / 53

Software Testing How?

Path Analysis/Control Flow Testing

▶ A white-box technique
▶ Two tasks

1. Aim to test different flows through code (high path coverage)
▶ Happy path and sad path

2. Analyze number of paths in program.
3. Decide which ones to test.

▶ Decreasing coverage:
▶ Logical paths
▶ Independent paths
▶ Branch coverage
▶ Statement coverage

H. Chen (CUNY-BC) Testing March 9, 2023 23 / 53

Software Testing How?

Combinations of Conditions

▶ For functions of several related variables.
▶ To fully test, we need all possible combinations (of equivalence

classes).
▶ How to reduce testing:

▶ Coverage analysis.
▶ Assess “important” (e.g., main functionalities) cases.
▶ Test all pairs of relations (but not all combinations).

H. Chen (CUNY-BC) Testing March 9, 2023 24 / 53

Software Testing How?

Guideline testing

Use previous experiences on the types of errors that typically occur

H. Chen (CUNY-BC) Testing March 9, 2023 25 / 53

Unit/Functional Testing

Outline
1 Review for Last Class
2 Software Quality
3 Software Testing

Why?
What?
Who?
How?

4 Unit/Functional Testing
Test Coverage
Strategies of Running Tests

5 Inspections and Reviews
6 Formal Methods
7 Static Analysis
8 Summary
9 References

H. Chen (CUNY-BC) Testing March 9, 2023 26 / 53

Unit/Functional Testing

Unit/Functional Testing

▶ Testing individual methods or classes
▶ Usually done by the programmer.
▶ Test each unit as it is developed (small chunks).
▶ Keep test cases/results around (Use JUnit or ...).
▶ Allows for regression testing.
▶ Facilitates refactoring.
▶ Tests become documentation !!

H. Chen (CUNY-BC) Testing March 9, 2023 27 / 53

Unit/Functional Testing

Assertion

▶ A boolean expression that should evaluate to true if the program is in
a correct state. If it evaluates to false it throws an exception

1 x = 1;
2 assert (x > 0);
3 x++;
4 assert (x > 0);

H. Chen (CUNY-BC) Testing March 9, 2023 28 / 53

Unit/Functional Testing

Unit/Functional Testing: Testing Methods

▶ Tests are calls to methods with different input parameters
▶ Assert expectations on the return-values or side effects of method calls
▶ Aim for high coverage

▶ Almost always white box, and
▶ Almost always performed by developer

H. Chen (CUNY-BC) Testing March 9, 2023 29 / 53

Unit/Functional Testing

Unit/Functional Testing: Example – Step 0

Developer wrote the code.
1 private int clickClearCount ;
2
3 @Override
4 protected void onCreate (Bundle savedInstanceState) {
5 super . onCreate (savedInstanceState);
6 setContentView (R. layout . activity_main);
7 clickClearCount = 0;
8 }
9

10 public void onClickCounter (View v) {
11 clickClearCount ++;
12 }

Let’s test whether the clickClearCount variable has the right value after
a few clicks.

H. Chen (CUNY-BC) Testing March 9, 2023 30 / 53

Unit/Functional Testing

Unit/Functional Testing: Example – Step 1

Sometimes we need to add methods to aid testing, e.g.,
1 public int getClickClearCount ()
2 {
3 return clickClearCount ;
4 }

For this example, need a way to access the private variable so it’s value
can be tested

H. Chen (CUNY-BC) Testing March 9, 2023 31 / 53

Unit/Functional Testing

Unit/Functional Testing: Example – Step 2

Now write the unit test ...
1 @Test
2 public void testButtonCounter ()
3 {
4 MainActivity mainAct = new MainActivity ();
5 mainAct . onClickCounter (null);
6 mainAct . onClickCounter (null);
7 mainAct . onClickCounter (null);
8 assertEquals (mainAct . getClickCount () ,3);
9 }

However, we need a Button object to pass to onClick
▶ get one via a findViewById() call
▶ or get a fake one (talk about this soon)

H. Chen (CUNY-BC) Testing March 9, 2023 32 / 53

Unit/Functional Testing

Test-Driven Development

▶ Write unit test cases BEFORE the code!
▶ Test cases “are”/“become” requirements.
▶ Forces development in small steps.

1. Write test case and code.
2. Verify (it fails or runs).
3. Modify code so it succeeds.
4. Rerun test case, previous tests.
5. Refactor until (success and satisfaction).

▶ We will discuss more about this ...

H. Chen (CUNY-BC) Testing March 9, 2023 33 / 53

Unit/Functional Testing Test Coverage

Some Testing Concepts

▶ Popular metric of testing
▶ Amount of code or execution paths covered by tests
▶ Several variants of this metric exist

H. Chen (CUNY-BC) Testing March 9, 2023 34 / 53

Unit/Functional Testing Test Coverage

Common Test Coverage Levels

▶ S0 (method coverage) – Is every method executed at least once by
the test suite?

▶ S1 (call coverage or entry/exit coverage) – Has each method been
called from every place it can be called?

▶ C0 (statement coverage) – Is every statement of the source code
executed at least once by the test suite?

▶ C1 (branch coverage) – Has each branch been taken in each direction
at least once?

▶ C2 (path coverage) – Has every possible route through the code been
executed?

H. Chen (CUNY-BC) Testing March 9, 2023 35 / 53

Unit/Functional Testing Test Coverage

Sample Code to Test

1 public class MyClass {
2 public void foo(boolean x, boolean y, boolean z) {
3 if (x)
4 if (y && z) bar (0);
5 else
6 bar (1);
7 }
8 public boolean bar(x) {
9 return x;

10 }
11 }

H. Chen (CUNY-BC) Testing March 9, 2023 36 / 53

Unit/Functional Testing Test Coverage

Examples of Test Coverage

▶ Satisfying S0 requiring calling foo and bar at least once each in the
tests

▶ Satisfying S1 requiring calling bar from both line 4 and line 6 in the
test suites

▶ Counting both branches of a conditional as a single statement,
satisfying C0 requiring calling foo at least once with x true, and at
least once with y false

▶ Satisfying C1 requiring calling foo at least once with x true, and with
x false, and with y && z true and false.

▶ Satisfying C2 requiring calling foo with all 8 combinations of values of
x, y, and z

H. Chen (CUNY-BC) Testing March 9, 2023 37 / 53

Unit/Functional Testing Test Coverage

Modified Condition/Decision Coverage (MCDC)

Combines a subset of the above levels
▶ Each point of entry and exit in the program have been invoked at

least once
▶ Every decision in the code has taken all possible outcomes at least

once
▶ Each condition in a decision has been shown to independently affect

that decision’s outcome

H. Chen (CUNY-BC) Testing March 9, 2023 38 / 53

Unit/Functional Testing Test Coverage

Achieving Test Coverage

▶ 100% of C0 coverage is not unreasonable.
▶ Achieving C1 coverage requires careful construction of tests.
▶ C2 is the most difficult of all, and the additional value of 100

H. Chen (CUNY-BC) Testing March 9, 2023 39 / 53

Unit/Functional Testing Strategies of Running Tests

Types of test execution approaches

▶ Regression Testing: automatically rerun old tests, so changes don’t
break what used to work

▶ Continuous Integration Testing: continuous regression testing vs.
later phases

H. Chen (CUNY-BC) Testing March 9, 2023 40 / 53

Inspections and Reviews

Outline
1 Review for Last Class
2 Software Quality
3 Software Testing

Why?
What?
Who?
How?

4 Unit/Functional Testing
Test Coverage
Strategies of Running Tests

5 Inspections and Reviews
6 Formal Methods
7 Static Analysis
8 Summary
9 References

H. Chen (CUNY-BC) Testing March 9, 2023 41 / 53

Inspections and Reviews

Inspections and Reviews

▶ Review: any process involving human testers reading and
understanding a document and then analyzing it with the purpose of
detecting errors

▶ Walkthrough: author explaining document to team of people
▶ Software inspection: detailed reviews of work in progress, following

Fagan’s method

H. Chen (CUNY-BC) Testing March 9, 2023 42 / 53

https://en.wikipedia.org/wiki/Fagan_inspection

Inspections and Reviews

Software Inspections

Steps:
1. Planning
2. Overview
3. Preparation
4. Inspection
5. Rework
6. Follow-up

H. Chen (CUNY-BC) Testing March 9, 2023 43 / 53

Inspections and Reviews

Software Inspections

▶ Focused on finding defects
▶ Output: list of defects
▶ Team of:

▶ 3–6 people
▶ Author included
▶ People working on related efforts
▶ Moderator, reader, scribe

H. Chen (CUNY-BC) Testing March 9, 2023 44 / 53

Inspections and Reviews

Inspections vs. Testing

Inspections
▶ Partially cost-effective.
▶ Can be applied to intermediate artifacts.
▶ Catch defects early.
▶ Helps disseminate knowledge about project and best practices.

Testing
▶ Finds errors cheaper, but correcting them is expensive.
▶ Can only be applied to code.
▶ Catch defects late (after implementation).
▶ Necessary to gauge quality.

H. Chen (CUNY-BC) Testing March 9, 2023 45 / 53

Formal Methods

Outline
1 Review for Last Class
2 Software Quality
3 Software Testing

Why?
What?
Who?
How?

4 Unit/Functional Testing
Test Coverage
Strategies of Running Tests

5 Inspections and Reviews
6 Formal Methods
7 Static Analysis
8 Summary
9 References

H. Chen (CUNY-BC) Testing March 9, 2023 46 / 53

Formal Methods

Formal Methods

▶ Mathematical techniques used to prove that a program works.
▶ Used for requirements/design/algorithm specification.
▶ Prove that implementation conforms to spec.
▶ Pre and post conditions
▶ Problems:

▶ Require math training.
▶ Not applicable to all programs.
▶ Only verification, not validation.
▶ Not applicable to all aspects of program (e.g., UI and maintainability).

H. Chen (CUNY-BC) Testing March 9, 2023 47 / 53

Static Analysis

Outline
1 Review for Last Class
2 Software Quality
3 Software Testing

Why?
What?
Who?
How?

4 Unit/Functional Testing
Test Coverage
Strategies of Running Tests

5 Inspections and Reviews
6 Formal Methods
7 Static Analysis
8 Summary
9 References

H. Chen (CUNY-BC) Testing March 9, 2023 48 / 53

Static Analysis

Static Analysis

▶ Examination of static structures of design/code for detecting
error-prone conditions (cohesion — coupling).

▶ Automatic program tools are more useful.
▶ Can be applied to:

▶ Intermediate documents (but in formal model)
▶ Source code
▶ Executable files

▶ Output needs to be checked by programmer.

H. Chen (CUNY-BC) Testing March 9, 2023 49 / 53

Summary

Outline
1 Review for Last Class
2 Software Quality
3 Software Testing

Why?
What?
Who?
How?

4 Unit/Functional Testing
Test Coverage
Strategies of Running Tests

5 Inspections and Reviews
6 Formal Methods
7 Static Analysis
8 Summary
9 References

H. Chen (CUNY-BC) Testing March 9, 2023 50 / 53

Summary

Summary

Verification & Validation

Testing

Unit testing

Strategies in writing tests

How about acceptance tests for our user stories?

H. Chen (CUNY-BC) Testing March 9, 2023 51 / 53

References

Outline
1 Review for Last Class
2 Software Quality
3 Software Testing

Why?
What?
Who?
How?

4 Unit/Functional Testing
Test Coverage
Strategies of Running Tests

5 Inspections and Reviews
6 Formal Methods
7 Static Analysis
8 Summary
9 References

H. Chen (CUNY-BC) Testing March 9, 2023 52 / 53

References

“Engineering Software as a Service” by Armando Fox and David Patterson
(2nd Edition)
“Essentials of Software Engineering” by Frank Tsui, Orlando Karam, and
Barbara Bernal(4th Edition) (Section 7.3.5)

H. Chen (CUNY-BC) Testing March 9, 2023 53 / 53

	Review for Last Class
	Software Quality
	Software Testing
	Why?
	What?
	Who?
	How?

	Unit/Functional Testing
	Test Coverage
	Strategies of Running Tests

	Inspections and Reviews
	Formal Methods
	Static Analysis
	Summary
	References

