Design Characteristics and Metrics: Part II

Hui Chen a

^aCUNY Brooklyn College, Brooklyn, NY, USA

May 9, 2023

- Design Complexity
- Cohesion and Coupling

- 3 Object-Oriented Complexity Metrics
- 4 References

- Design Complexity
- Cohesion and Coupling

- 3 Object-Oriented Complexity Metrics
- 4 References

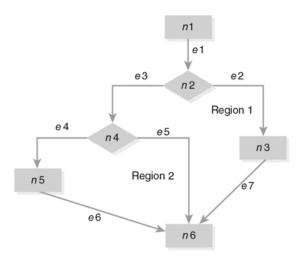
Characterizing Design Complexity

- Halstead metrics
- McCabe's Cyclomatic Complexity metric (most broadly used)
- Henry-Kafura Information Flow (Fan-in/Fan-out) metrics
- Card and Glass design complexity metrics

Halstead Metrics

Measures the lexical complexity, rather than structural complexity of source code

- ▶ Use four fundamental units of measurements from code:
 - $ightharpoonup n_1 = \text{number of distinct operators}$
 - $ightharpoonup n_2 = number of distinct operands$
 - $ightharpoonup N_1 = {\sf sum} \ {\sf of} \ {\sf all} \ {\sf occurrences} \ {\sf of} \ {\sf operators}$
 - $ightharpoonup N_2 = {\sf sum} \ {\sf of} \ {\sf all} \ {\sf occurrences} \ {\sf of} \ {\sf operands}$
- Define:
 - Program vocabulary: $n = n_1 + n_2$
 - Program length: $N = N_1 + N_2$
- Commpute 4 metric:
 - Volume: $V = N \log_2 n$
 - Potential volume: $V' = (2 + n_2') \log_2(2 + n_2')$ where n_2' based on most "succinct" program's n_2 .
 - ▶ Program Implementation Level: L = V'/V
 - Effort: E = V/L


McCabe's Cyclomatic Complexity

Complexity of the program "control flow," defined as

Cyclomatic complexity =E-N+2p where

- ▶ E = number of edges
- ▶ N = number of nodes
- ightharpoonup p = number of connected components (usually 1)

McCabe's Cyclomatic Complexity: Example

7 / 21

FIGURE 8.1 A simple flow diagram for cyclomatic complexity.

Henry-Kafura (Fan-in and Fan-out)

metric measures the inter-modular flow, defined as, $Cp=({\sf fan\text{-}in}\times{\sf fan\text{-}out})^2$ where "flows" concern

- ► Parameter passing
- ► Global variable access
- Inputs
- Outputs

Henry-Kafura (Fan-in and Fan-out) Complexity: Example

Assume:

- Fan-in, number of inter-modular flow into a program: 3
- Fan-out: number of inter-modular flow out of a program: 1

$$Cp = (3 \times 1)^2 = 9$$

Card and Glass Complexity

Also metric measures the inter-modular flow.

- Structural complexity of module x: $S_x = (fan-out_x)^2$
- ▶ Data complexity: $D_x = P_x/(\text{fan-out}_x + 1)$, where P_x is the number of variables passed to and from the module
- ▶ System complexity: $C_x = S_x + D_x$

Note "fan-in" is only a factor for the data complexity here.

- Design Complexity
- 2 Cohesion and Coupling

- 3 Object-Oriented Complexity Metrics
- 4 References

Cohesion and Coupling

- ightharpoonup Cohesion: "degree of relatedness" within a unit, a module, an object, or a component. Higher \equiv Better
- Coupling: "degree of interdependence" between software units, modules, or components. Lower ≡ Better

Bieman and Ott's Functional Cohesion Metrics

Begin with counting:

- Data token: any occurrence of variable or constant in the program.
- ▶ Porgram slice: within a program, the collection of all the statements that can affect the value of some specific variable of interest.
- ▶ Data slice: within a program, the collection of all the data tokens in the slice that will affect the value of a specific variable of interest.
- Glue tokens: the data tokens in the program that lie in more than one data slice.
- ► Super glue tokens: the data tokens in the program that lie in every data slice of the program

Compute metrics:

- Weak functional cohesion: (# of glue tokens)/(total # of data tokens)
- Strong functional cohesion: (# of super glue tokens)/(total # of data tokens)

Bieman and Ott's Functional Cohesion Metrics: Example

minimum values procedure

MinMax (z, n) integer end, min, max, i; end = n, max = z[0]; min = z[0]; For (i = 1, i = < end; i++){ if z[i] > max max then max = z[i];

if $z[i] > \min$ then $\max = z[i]$;

return max, min;

Finding the maximum and

Data Tokens:	Slice max:	Slice min:	Glue Tokens:	Superglue:
z1	z1	z1	z1	zl
n1	n1	nl	nl	n1
end1	end1	end1	end1	end1
min1	max1	min1	I1	I1
max1	I1	I1	end2	end2
I1	end2	end2	n2	n2
end2	n2	n2	12	12
n2	max2	min2	03	03
max2	z2	z3	13	I3
22	01	02	end3	end3
01	12	12	I4 (11)	I4 (11)
min2	03	03	1	. , , , ,
z3	13	13		
02	end3	end3		
12 03 13	14	I4		
03	z4	z6		
I3	15	17		
end3	max3	min3		
I4	max4	min4		
24	z5	z7		
15	I6	I8		
max3	max5	min5		
max4	(22)	(22)		
z5				
16				
z6				
17				
min3				
min4				
z 7				
18				
max5	1			

14 / 21

FIGURE 8.2 A pseudocode example of functional cohesion measures.

min5 (33)

Bieman and Ott's Functional Cohesion Metrics: Example

Let end be 5. The glue tokens are the same as the super glue tokens.

- ► Super glue tokens = 11
- ► Glue tokens = 11

The data slice for min and data slice for max are also the same here: 22.

The total number of data tokens: 33.

The cohesion metrics for the example of min-max are:

- ▶ Weak functional cohesion = 11 / 33 = 1/3
- ▶ Strong functional cohesion = 11 / 33 = 1/3

What if we refactored the minmax function to two functions, Max and Min?

What if we increase the value of end

- Design Complexity
- Cohesion and Coupling

- 3 Object-Oriented Complexity Metrics
- 4 References

Chidamber and Kemerer (C-K) OO Metrics

- Weighted Methods per Class (WMC)
- Depth of Inheritance Tree (DIT)
- Number of Children (NOC)
- Coupling Between Object Classes (CBO)
- Response for a Class (RFC)
- Lack of Cohesion in Methods (LCOM)

Lack of Cohesion of Methods (LCOM)

High LCOM indicates low cohesion and possibly high complexity. A simple method to estimate LCOM,

$$LCOM = 1 - \frac{\sum (m_i)}{MV} \tag{1}$$

where

- $ightharpoonup LCOM \in [0,1]$
- ► M = # of methods of the class
- ▶ V = # of instance or class variables of the class
- $ightharpoonup m_i = \#$ of class methods that access the i'th class variable

Observations:

- A class is utterly cohesive if all its methods use all its instance fields, because $\sum (m_i) = MV$ and then LCOM = 0
- ► High LCOM suggests possible violation of the Single Responsibility Principle

Summary and Questions

An introduciton to several complexity metrics.

- Halstead metrics
- McCabe's Cyclomatic Complexity metric (most broadly used)
- Henry-Kafura Information Flow (Fan-in/Fan-out) metrics
- Card and Glass design complexity metrics
- Cohesion metrics
- OO metrics, in particular, LCOM

Let's do an exercise ...

- Design Complexity
- Cohesion and Coupling

- 3 Object-Oriented Complexity Metrics
- 4 References

- "Engineering Software as a Service" by Armando Fox and David Patterson (2nd Edition)
- "Introduction to Software Design with Java" by Martin P. Robillard "Essentials of Software Engineering" by Frank Tsui, Orlando Karam, and Barbara Bernal(4th Edition)