Overview of Detailed Design

Hui Chen a

^aCUNY Brooklyn College, Brooklyn, NY, USA

April 4, 2023

Outline

- From Requirements to Design
- 2 Detailed Design
- 3 Detailed Design Techniques
 - Functional Decomposition
 - Database Design
 - Conceptual Design
 - Logical DB Design
 - Physical DB Design
 - OO Design
 - User-Interface Design
- 4 References

Outline

- From Requirements to Design
- 2 Detailed Design
- Oetailed Design Techniques
 - Functional Decomposition
 - Database Design
 - Conceptual Design
 - Logical DB Design
 - Physical DB Design
 - OO Design
 - User-Interface Design
- 4 References

Software Design

- Design starts mostly from/with requirements evolving mostly from functionalities and other non-functional characteristics
 - In the waterfall model design generally occurs after requirements
 - In agile, design is performed during each iteration
- To answer: How is the software solution going to be structured?
 - What are the main components (functional composition) often directly from requirements' functionalities (e.g., use cases, user stories, scenarios, storyboards)
 - ► How are these components related? Possibly re-organize the components (composition/decomposition)
- Two main levels of design:
 - Architectural (high level) design
 - Detailed design
 - ▶ Different design concerns at different abstraction levels (e.g. classes vs. modules vs. entire system)
- ► How should we depict design what notation/language?

Outline

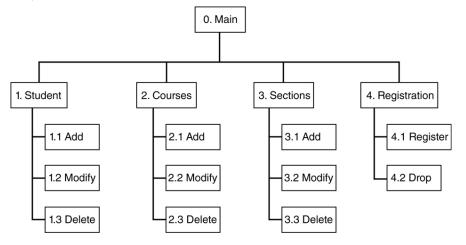
- From Requirements to Design
- 2 Detailed Design
- 3 Detailed Design Techniques
 - Functional Decomposition
 - Database Design
 - Conceptual Design
 - Logical DB Design
 - Physical DB Design
 - OO Design
 - User-Interface Design
- 4 References

Detailed Design

Further refine architecture and match with requirements.

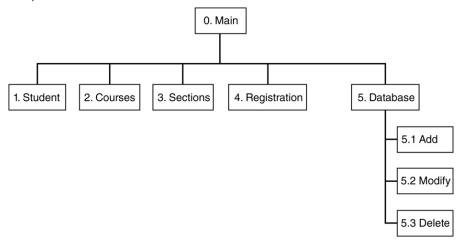
- ► How detailed?
- ► How formal?
- Maybe of different levels of detail for different views.

Outline


- From Requirements to Design
- Detailed Design
- 3 Detailed Design Techniques
 - Functional Decomposition
 - Database Design
 - Conceptual Design
 - Logical DB Design
 - Physical DB Design
 - OO Design
 - User-Interface Design
- References

Functional Decomposition

- Dates back to "structured programming"
- Start with: main (task/requirements) → module.
- Refine into sub-modules.
- There are alternative decompositions.


Functional Decomposition: Example 1

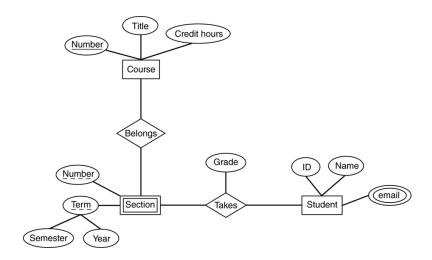
Consider a course-student management application (like part of CUNY First).

Functional Decomposition: Example 2

Consider a course-student management application (like part of CUNY First).

Database Design

Many applicationns require a database.


- Conceptual modeling (done during analysis/requirement phase) produces ER diagram.
- 2. Logical design (to an actual type of database, e.g., to relational DB).
- 3. Physical design (decide data types, etc.).
- 4. Deployment/maintenance
 - Low-level physical (which hard drive, etc.)
 - Adjustment of indexes

Entity-Relationship Model

Typically represented as Entity-Relationship diagrams

- Entities (rectangles)
- Relationships (diamonds)
- Weak: double lines
- Attributes (ovals)
- Multi-valued: double lines
- ► Identifying (keys): underlined

Entity-Relationship Model: Example

Relational Database Design

Most applications use relational databases.

- Relations (or tables)
 - Two-dimensional sets or bags
 - Rows (tuples), columns (attributes)
 - A row may be an entity; columns may be relationships or attributes.
- Constraints
 - Primary key (unique identifier) for search
 - ► Foreign keys (connects tables)
 - **.** . . .

Physical Database Design

- Determine data types for each attribute.
 - Check which ones your DBMS support.
 - Encoding.
- Decide on indexes data structures stored as part of the database to speed up searches
 - searches are faster, updates are slower.
 - indexes consume space.
 - can always adjust during deployment.
- Denormalization done sometimes (avoid unless you must).

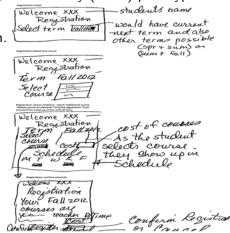
Object-Oriented Design

To be continued

User-Interface Design

- Can be part of requirement analysis and elicitation or part of design specification
- In the Agile model (for the class project), as part of the requirements

Most apparent to the user and the concerns are


- Two main issues:
 - Flow of interactions
 - Look and feel
- Types of interfaces
 - Command-line
 - Text menus
 - ► Graphical (GUI)

Flow of Interactions

Recall: sketches and user stories, a low-fidelity (Lo-FI) prototype

Prototype screens

- 1. On Registration, select term.
- 2. Registration shows term, and on it select first course.
- Registration shows term, course(s) with schedule and cost. On it select among Additional course, Delete course, Finish registration.
- Registration shows final schedule. On it, select Confirm or Cancel.

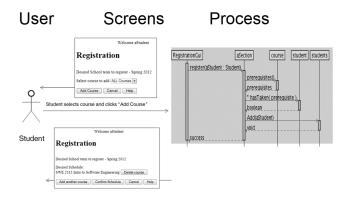
Low-Fidelity vs. High-Fidelity Prototypes

Example of high-fidelity prototypes

Welcome aStudent

Registration

Desired School term to register - Spring 2012

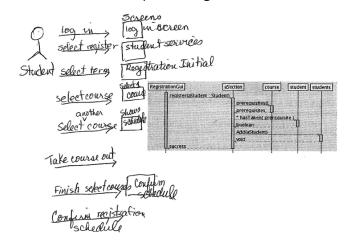

Desired Schedule:

SWE 2313 Intro to Software Engineering Delete course

Add another course Confirm Schedule Cancel Help

Flow of Interactions: The Details

Consider the flow of all possible interactions – which include the user input, the screens, and the process

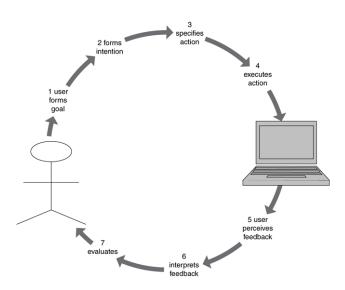


Add user interactions to the sequence diagram

20 / 29

Flow of Interactions: The Details

Add user interactions to the sequence diagram



Models for UI Design

Many models are developed ... (an advanced topic for UI design)

- Norman's 7 Stage Model
- The GOMS Model

Norman's 7 Stage Model

Norman's 7 Stage Model

Users will

- 1. form a goal;
- 2. form an intention;
- specify an action;
- 4. execute the action.
 - After the users execute the action, the feedback from the system is critical for their understanding of the system.
- 5. Users will perceive the system state (feedback);
- 6. interpret the feedback; and
- evaluate.

If, at the last stage, the users evaluate the mode as "intuitive," they will continue with the next cycle toward their goal.

The GOMS Model

Consider different kinds of users.

Four factors (for the kind of user)

- Goals of the user
- Operations provided by the system
- Methods or the sequence of operations
- Selection rules for the methods

Other UI Issues

- Kinds of users
- Heuristics
- Ul guidelines
- Multicultural issues
- Metaphors
- Multiplatform software
- Accessibility
- Multimedia interfaces

Summary and Questions

Aspects of detailed design

- Functional decomposition
- Database design
- Object-Oriented design and UML (discuss separately)
- UI design (requirements and design specification)

Outline

- From Requirements to Design
- 2 Detailed Design
- 3 Detailed Design Techniques
 - Functional Decomposition
 - Database Design
 - Conceptual Design
 - Logical DB Design
 - Physical DB Design
 - OO Design
 - User-Interface Design
- 4 References

- "Engineering Software as a Service" by Armando Fox and David Patterson (2nd Edition)
- "Essentials of Software Engineering" by Frank Tsui, Orlando Karam, and Barbara Bernal(4th Edition)

29 / 29