
Test-Driven Development

Hui Chen a

aCUNY Brooklyn College, Brooklyn, NY, USA

H. Chen (CUNY-BC) TDD 1 / 1

Outline

H. Chen (CUNY-BC) TDD 2 / 1

Test-Driven Development

Outline

H. Chen (CUNY-BC) TDD 3 / 1

Test-Driven Development

Test-Driven Development (TDD)

Basic idea: write the tests before you write the code
▶ The tests should fail at the start
▶ As you complete the implementation the tests should succeed
▶ Testing (and the good test coverage provided by TDD) allows your

team to be more flexible
▶ Confident in making changes to the system, when your tests pass

H. Chen (CUNY-BC) TDD 4 / 1

Test-Driven Development

TDD Rule of Thumb

Another way of expressing the main rule:
▶ Only production code you write is for the purpose of fixing a failing

test
What is production code?

H. Chen (CUNY-BC) TDD 5 / 1

TDD Workflow

Outline

H. Chen (CUNY-BC) TDD 6 / 1

TDD Workflow Workflow

TDD High Level Work Flow

RED-GREEN-REFACTORING
1. Red: Write some tests – Think about one thing the code should do;

capture that thought in a test
2. Green: Write the simplest possible code that lets the test pass – Aim

for “always have working code”
3. Refactor: Clean up the code you have just written – Aim for nice,

clean structure, naming, etc.
What is refactoring?

H. Chen (CUNY-BC) TDD 7 / 1

https://en.wikipedia.org/wiki/Code_refactoring

TDD Workflow Workflow

The “Red”

First, we write a test
▶ This really amounts to design by example
▶ We make API decisions
▶ We’re thinking hard about how code is used
▶ We’re taking a client perspective
▶ We’re working at a very small scale
▶ Example test for a Stack

Stack s t a c k = new Stack () ;
s t a c k . push (x) ;
y = s t a ck . pop () ;
a s s e r t E q u a l s (x , y) ;

H. Chen (CUNY-BC) TDD 8 / 1

TDD Workflow Workflow

The “Green”

Then, we just write enough code so that the test case can run
▶ We don’t write more code
▶ All we want is to make the test pass

▶ It should be a very small step
▶ Implementation probably not optimal
▶ We don’t care about it (Yet!)

▶ Example the test case of the Stack
▶ Write the default contructor, push, and pop, nothing more

H. Chen (CUNY-BC) TDD 9 / 1

TDD Workflow Workflow

The “Refactoring”

And then we fefactor
▶ TDD Without refactoring likely makes ugly code – thoroughly tested,

but ugly
▶ There are a variety of transforms/refactoring to address this, but
▶ Developing in small increments
▶ The Code always runs and past the test cases!

▶ Changes are small enough to fit in our heads
▶ Timeframe is minutes to (maybe) hours

▶ Evolutionary design
▶ Anticipated vs. unanticipated changes
▶ Many “anticipated changes” turn out to be unnecessary

H. Chen (CUNY-BC) TDD 10 / 1

TDD Workflow Refactoring

Refactoring

A disciplined technique for restructuring an existing body of code, altering
its internal structure without changing its external behavior
▶ Keeping code healthy with refactoring (meaning?)
▶ Refactoring is disciplined – Wait for a problem before solving it
▶ Refactorings are transformations – Many refactorings are simply

applications of patterns
▶ Refactorings alter internal structure
▶ Refactorings preserve behavior

H. Chen (CUNY-BC) TDD 11 / 1

TDD Workflow Refactoring

Final Step

Making sure the software still works
▶ Protection with automated tests

▶ Test harness is only thing that ensures software works
▶ Rerun tests after each change (Regression Testing)

▶ Fast feedback
▶ Sometimes, entire test suite is too slow – role of continuous integration

servers to execute regression tests in background
▶ Management of multiple developers/multiple conflicting changes

H. Chen (CUNY-BC) TDD 12 / 1

Tools for TDD

Outline

H. Chen (CUNY-BC) TDD 13 / 1

Tools for TDD

Tools for TDD

▶ JUnit
▶ Also Continuous Integration Servers, e.g. Jenkins, Travis CI, Github

Actions, etc

H. Chen (CUNY-BC) TDD 14 / 1

Tools for TDD

A demo ...

Let’s fire up Android Studio and see how it works ...

H. Chen (CUNY-BC) TDD 15 / 1

Summary

Outline

H. Chen (CUNY-BC) TDD 16 / 1

Summary

Summary

TDD

TDD workflow

Demo

H. Chen (CUNY-BC) TDD 17 / 1

References

Outline

H. Chen (CUNY-BC) TDD 18 / 1

References

References

“Introduction to Software Testing” 2nd Edition. Ammann and Offutt

JUnit 5 User Guide

JUnit 4 Getting Strated Guide

H. Chen (CUNY-BC) TDD 19 / 1

https://junit.org/junit5/docs/current/user-guide/
https://github.com/junit-team/junit4/wiki/Getting-started

