
Some Ideas on Debugging

Hui Chen a

aCUNY Brooklyn College, Brooklyn, NY, USA

May 10, 2022

H. Chen (CUNY-BC) Debugging May 10, 2022 1 / 39

Outline

1 Outline

2 Software Defect

3 Debugging Problem

4 Debugging Process
Tracking Problems
Reproducing Failures
Automating Reproducibility
Finding and Fixing Defects

5 Summary

6 References

H. Chen (CUNY-BC) Debugging May 10, 2022 2 / 39

Outline

Outline

1 Outline

2 Software Defect

3 Debugging Problem

4 Debugging Process
Tracking Problems
Reproducing Failures
Automating Reproducibility
Finding and Fixing Defects

5 Summary

6 References

H. Chen (CUNY-BC) Debugging May 10, 2022 3 / 39

Outline

Outline

I Software defect

H. Chen (CUNY-BC) Debugging May 10, 2022 4 / 39

Software Defect

Outline

1 Outline

2 Software Defect

3 Debugging Problem

4 Debugging Process
Tracking Problems
Reproducing Failures
Automating Reproducibility
Finding and Fixing Defects

5 Summary

6 References

H. Chen (CUNY-BC) Debugging May 10, 2022 5 / 39

Software Defect

Software Defect

Defects (or faults) : deviations from requirement or design specifications
or expectations which might lead to failures in operation.

Colloquially, called bugs.

H. Chen (CUNY-BC) Debugging May 10, 2022 6 / 39

Software Defect

The Origin of “Bug”

“It has been just so in all of my inventions. The first step is an intuition,
and comes with a burst, then difficulties arise—this thing gives out and [it
is] then that ’Bugs’—as such little faults and difficulties are called—show
themselves and months of intense watching, study and labor are requisite
...” – Thomas Edison (circa 1840’s)

H. Chen (CUNY-BC) Debugging May 10, 2022 7 / 39

Software Defect

The Origin of Computer “Bug” and “Debug”

Figure: Source: See Shapiro1

1Fred R Shapiro. “Etymology of the computer bug: History and folklore”. In: American
Speech 62.4 (1987), pp. 376–378.

H. Chen (CUNY-BC) Debugging May 10, 2022 8 / 39

Software Defect

The Origin of Computer “Bug” and “Debug”

Figure: Archived at the Smithsonian Institution’s National Museum of American
History

H. Chen (CUNY-BC) Debugging May 10, 2022 9 / 39

https://www.si.edu/object/log-book-computer-bug%3Anmah_334663
https://www.si.edu/object/log-book-computer-bug%3Anmah_334663

Debugging Problem

Outline

1 Outline

2 Software Defect

3 Debugging Problem

4 Debugging Process
Tracking Problems
Reproducing Failures
Automating Reproducibility
Finding and Fixing Defects

5 Summary

6 References

H. Chen (CUNY-BC) Debugging May 10, 2022 10 / 39

Debugging Problem

Need to Develop Debugging Skills

Debugging is a skill that we can gradually learn and develop

No matter how software development progresses, there will likely always be
bugs to squash

H. Chen (CUNY-BC) Debugging May 10, 2022 11 / 39

Debugging Problem

Defect, Errors, and Failure

Requirement Fault
(Requirement Defect)

Design Fault
(Design Defect)

Software
Error

Software
Failure

Observed
Symptoms

Observed
Misbehavior

causes

causes
triggers

yields evidenced by

(a) Relations of software defects (faults),
errors, and failures.

1 # include <stdlib .h>
2 enum { BUFFER_SIZE = 32 };
3
4 int f(void) {
5 char * text_buffer = (char *) malloc (

BUFFER_SIZE);
6 if (text_buffer == NULL) {
7 return -1;
8 }
9
10 return 0;
11 }

(b) A code snippet showing a memory
allocation defect

Figure: Relationship of defect, error, and failure and an example of defective code

“an analyzing process must equally have been performed in order to
furnish the Analytical Engine with the necessary operative data; and that
herein may also lie a possible source of error. Granted that the actual
mechanism is unerring in its processes, the cards may give it wrong
orders.” – Ada Lovelace’s notes on Babbage’s Analytical Engine

H. Chen (CUNY-BC) Debugging May 10, 2022 12 / 39

Debugging Problem

Defect, Errors, and Failure

A failure comes to be in three stages:
1. The programmer creates a defect (or fault)
2. The defect causes an infection (or error)
3. The infection (or error) causes a failure – an externally visible error.

I Not every defect results in an infection, and not every infection results
in a failure.

H. Chen (CUNY-BC) Debugging May 10, 2022 13 / 39

Debugging Problem

Debugging is a Search Problem

Given a correct state and a failure state of the program, search across time
and space to find the defect.
I State can be very large, consisting of millions of variables
I Time can be lengthy and consist of lots of individual (sometime

concurrent) actions
Search is driven by two processes
I Separate relevant from irrelevant state
I Separate sane from infected

H. Chen (CUNY-BC) Debugging May 10, 2022 14 / 39

Debugging Process

Outline

1 Outline

2 Software Defect

3 Debugging Problem

4 Debugging Process
Tracking Problems
Reproducing Failures
Automating Reproducibility
Finding and Fixing Defects

5 Summary

6 References

H. Chen (CUNY-BC) Debugging May 10, 2022 15 / 39

Debugging Process

Debugging Process

To debug a program, generally, proceed in 7 steps:
1. Track the problem in the bug database
2. Reproduce the failure
3. Automate and simplify the test case
4. Find possible infection origins
5. Focus on the most likely origins
6. Isolate the infection chain
7. Correct the defect

H. Chen (CUNY-BC) Debugging May 10, 2022 16 / 39

Debugging Process Tracking Problems

Tracking the Problem

Report and track the problem, generally, do the following,
I Look for duplicates
I Provide sufficient context
I Prioritize
I Relate the problem to

I a test (or tests)
I a feature
I requirement specification
I released version of the software

Bug (issues) trackers are now the norm
I PivotalTracker, BugZilla, GitHub’s issue trackers, . . .

H. Chen (CUNY-BC) Debugging May 10, 2022 17 / 39

Debugging Process Reproducing Failures

Reproducing the Failure

I Reproducing is one of the toughest problems in debugging.
I One must

I recreate the environment in which the problem occurred
I recreate the problem history – the steps that lead to the problem

I Iterative process of reproducing bugs
1. Start with your environment
2. While the problem is not reproduced, adapt more and more

circumstances from the user’s environment
3. Iteration ends when problem is reproduced (or when environments are

“identical”)

H. Chen (CUNY-BC) Debugging May 10, 2022 18 / 39

Debugging Process Reproducing Failures

Reproducing the Environment

I Many configurations ...
I Testing on these configurations
I All needed to find & reproduce problems

H. Chen (CUNY-BC) Debugging May 10, 2022 19 / 39

Debugging Process Reproducing Failures

Reproducing Execution

After reproducing the environment, we need to recreate the problem
history.

we must reproduce the execution
I Basic idea: Any execution is determined by the input (in a general

sense)
I Reproducing input → reproducing execution ?

I Easy to transfer and replicate
I Caveat #1: Get all the data you need
I Caveat #2: Get only the data you need
I Caveat #3: Privacy issues

H. Chen (CUNY-BC) Debugging May 10, 2022 20 / 39

Debugging Process Reproducing Failures

Reproducing Communication

General idea: Record and replay, e.g., user interaction
I It can be slow
I Difficult for systems that still need to process user interactions
I Also, tracing can create lots of data, e.g.,

I Web server with 10 requests/sec
I A trace of 10 k/request means 8GB/day
I All of this must be replayed to reproduce the failure (alternative:

checkpoints)

H. Chen (CUNY-BC) Debugging May 10, 2022 21 / 39

Debugging Process Reproducing Failures

Reproducing Randomness and Concurrency

Program behaves different in every run. How to test?

Example.
I Based on random number generator
I Pseudo-random: save seed (and make it configurable)

Example.
I Trace-driven. record + reply sequence

Example.
I Thread changes are induced by a scheduler
I It suffices to record the schedule (i.e. the moments in time at which

thread switches occur) and to replay it

H. Chen (CUNY-BC) Debugging May 10, 2022 22 / 39

Debugging Process Reproducing Failures

Be aware of Heisenbug

int f()
{
int i;
return i;
}

H. Chen (CUNY-BC) Debugging May 10, 2022 23 / 39

Debugging Process Automating Reproducibility

Automating Tests

Automate and simplify the test case
I Can be system level (i.e. user behavior based)
I Can be lower layers of functionality

Good idea to reproduce the bug via a test case
I Easy way to ensure it is fixed
I Good to keep regression-testing it

H. Chen (CUNY-BC) Debugging May 10, 2022 24 / 39

Debugging Process Finding and Fixing Defects

Finding and Fixing Defects

The rest of the process consists of
1. Find Possible Infection Origins
2. Focus Likely Origins
3. Isolate Infection Chain
4. Correct Defects

H. Chen (CUNY-BC) Debugging May 10, 2022 25 / 39

Debugging Process Finding and Fixing Defects

Scientific Debugging

Some people are good at guessing causes! Unfortunately, intuition is hard
to grasp:
I Requires a priori knowledge
I Does not work in a systematic and reproducible fashion
I In short: Intuition cannot be taught

The Scientific Method – can be taught
I The scientific method is a general pattern of how to find a theory

that explains (and predicts) some aspect of the universe
I Called “scientific method” because it’s supposed to summarize the

way that (experimental) scientists work

H. Chen (CUNY-BC) Debugging May 10, 2022 26 / 39

Debugging Process Finding and Fixing Defects

Scientific Method

1. Observe some aspect of the universe.
2. Invent a hypothesis that is consistent with the observation.
3. Use the hypothesis to make predictions.
4. Tests the predictions by experiments or observations and modify the

hypothesis.
5. Repeat 3 and 4 to refine the hypothesis

H. Chen (CUNY-BC) Debugging May 10, 2022 27 / 39

Debugging Process Finding and Fixing Defects

Scientific Debugging

Figure: Source: Zeller2

2Andreas Zeller. Why programs fail: a guide to systematic debugging. Elsevier, 2009.
H. Chen (CUNY-BC) Debugging May 10, 2022 28 / 39

Debugging Process Finding and Fixing Defects

Scientific Debugging: Example

$ sample 9 8 7
output: 7 8 9

$ $ sample 11 14
output: 0 11

H. Chen (CUNY-BC) Debugging May 10, 2022 29 / 39

Debugging Process Finding and Fixing Defects

Scientific Debugging: Iteration 1

1 int main(int argc , char *argv [])
2 {
3 int *a;
4 int i;
5
6 a = (int *) malloc ((argc - 1) * sizeof (int));
7 for (i = 0; i < argc - 1; i++)
8 a[i] = atoi(argv[i + 1]);
9

10 shell_sort (a, argc);
11
12 printf (" Output : ");
13 for (i = 0; i < argc - 1; i++)
14 printf ("%d ", a[i]);
15 printf ("\n");
16
17 free(a);
18
19 return 0;
20 }

I Observe the input and “Output:” ...
I Hypothesis: “the infection exists after the call to shell sort ...”
I Experiment and confirmed: a[] = [0, 11, 14]

H. Chen (CUNY-BC) Debugging May 10, 2022 30 / 39

Debugging Process Finding and Fixing Defects

Scientific Debugging: Iteration 2

1 int main(int argc , char *argv [])
2 {
3 int *a;
4 int i;
5
6 a = (int *) malloc ((argc - 1) * sizeof (int));
7 for (i = 0; i < argc - 1; i++)
8 a[i] = atoi(argv[i + 1]);
9

10 shell_sort (a, argc);
11
12 printf (" Output : ");
13 for (i = 0; i < argc - 1; i++)
14 printf ("%d ", a[i]);
15 printf ("\n");
16
17 free(a);
18
19 return 0;
20 }

I Observe the input and “Output:”, and the result of the previous hypothesis ...
I Hypothesis: “the infection does not occur until the call the shell sort ”
I Experiment and confirmed: a[] = [11, 14]; size = 2

H. Chen (CUNY-BC) Debugging May 10, 2022 31 / 39

Debugging Process Finding and Fixing Defects

Scientific Debugging: Iteration 3

1 int main(int argc , char *argv [])
2 {
3 int *a;
4 int i;
5
6 a = (int *) malloc ((argc - 1) * sizeof (int));
7 for (i = 0; i < argc - 1; i++)
8 a[i] = atoi(argv[i + 1]);
9

10 shell_sort (a, argc);
11
12 printf (" Output : ");
13 for (i = 0; i < argc - 1; i++)
14 printf ("%d ", a[i]);
15 printf ("\n");
16
17 free(a);
18
19 return 0;
20 }

I Observe the input and “Output:”, and the result of the previous hypotheses ...
I Hypothesis: “the call to shell sort is wrong”
I Experiment and confirmed: the error goes away when making it argc-1

H. Chen (CUNY-BC) Debugging May 10, 2022 32 / 39

Debugging Process Finding and Fixing Defects

Scientific Bugging: More Examples

I Example 1
I Example 2

H. Chen (CUNY-BC) Debugging May 10, 2022 33 / 39

https://jvns.ca/blog/2020/04/29/why-strace-doesnt-work-in-docker/
https://cloud.google.com/blog/topics/inside-google-cloud/google-cloud-support-engineer-solves-a-tough-dns-case

Debugging Process Finding and Fixing Defects

Scientific Debugging: Making the Process Explicit

“Everything gets written down, formally, so that you know at all times
where you are, where you’ve been, where you are going, and where you
want to get. In scientific work and electronics technology this is necessary
because otherwise problems get so complex you get lost in them and
confused and forget about what you know and what you don’t know and
have to give up” – “Zen and the Art of Motorcycle Maintenance” by
Robert M. Pirsig

People can remember about seven chunks in short-term memory (STM)
tasks (See Miller3)

3George A Miller. “The magical number seven, plus or minus two: Some limits on our
capacity for processing information.”. In: Psychological review 63.2 (1956), p. 81.

H. Chen (CUNY-BC) Debugging May 10, 2022 34 / 39

Debugging Process Finding and Fixing Defects

Scientific vs. Quick and Dirty

I Not every problem needs the strength of the scientific method or
explicit debugging

I a quick-and-dirty process sometimes suffices.
I Suggestion: Go quick and dirty for several minutes, and then apply

the scientific method.

H. Chen (CUNY-BC) Debugging May 10, 2022 35 / 39

Summary

Outline

1 Outline

2 Software Defect

3 Debugging Problem

4 Debugging Process
Tracking Problems
Reproducing Failures
Automating Reproducibility
Finding and Fixing Defects

5 Summary

6 References

H. Chen (CUNY-BC) Debugging May 10, 2022 36 / 39

Summary

Summary

To debug a program, generally, proceed in 7 steps:
1. Track the problem in the bug database
2. Reproduce the failure
3. Automate and simplify the test case
4. Find possible infection origins
5. Focus on the most likely origins
6. Isolate the infection chain
7. Correct the defect

Use scientific debugging method in conjunction with the quick and dirty
method.

H. Chen (CUNY-BC) Debugging May 10, 2022 37 / 39

References

Outline

1 Outline

2 Software Defect

3 Debugging Problem

4 Debugging Process
Tracking Problems
Reproducing Failures
Automating Reproducibility
Finding and Fixing Defects

5 Summary

6 References

H. Chen (CUNY-BC) Debugging May 10, 2022 38 / 39

References

Zeller, Andreas. Why programs fail: a guide to systematic debugging.
Elsevier, 2009.
“Engineering Software as a Service” by Armando Fox and David Patterson
(2nd Edition)
“Introduction to Software Design with Java” by Martin P. Robillard
“Essentials of Software Engineering” by Frank Tsui, Orlando Karam, and
Barbara Bernal(4th Edition)

H. Chen (CUNY-BC) Debugging May 10, 2022 39 / 39

https://link.springer.com/book/10.1007/978-3-030-24094-3

	Outline
	Software Defect
	Debugging Problem
	Debugging Process
	Tracking Problems
	Reproducing Failures
	Automating Reproducibility
	Finding and Fixing Defects

	Summary
	References

