
Some Ideas on Implementation

Hui Chen a

aCUNY Brooklyn College, Brooklyn, NY, USA

May 3, 2022

H. Chen (CUNY-BC) Implementation May 3, 2022 1 / 19

Outline

1 Working Code vs. Beautiful Code
CODE should be DRY
Clarity
Writing Idiomatic Code
Tools

2 References

H. Chen (CUNY-BC) Implementation May 3, 2022 2 / 19

Working Code vs. Beautiful Code

Outline

1 Working Code vs. Beautiful Code
CODE should be DRY
Clarity
Writing Idiomatic Code
Tools

2 References

H. Chen (CUNY-BC) Implementation May 3, 2022 3 / 19

Working Code vs. Beautiful Code

Working Code vs. Beautiful Code

Working code doesn’t necessarily mean good code.

H. Chen (CUNY-BC) Implementation May 3, 2022 4 / 19

Working Code vs. Beautiful Code

Working Code vs. Good Code

What’s wrong this the following code? (Source: Steve McConnell1)
1 void HandleStuff (CORP_DATA inputRec , int crntQtr , EMP_DATA empRec ,
2 double estimRevenue , double ytdRevenue , int screenX , int screenY ,
3 COLOR_TYPE newColor , COLOR_TYPE prevColor , StatusType status ,
4 int expenseType) {
5 int i;
6 for (i = 0; i < 100; i++) {
7 inputRec . revenue [i] = 0;
8 inputRec . expense [i] = corpExpense [crntQtr][i];
9 }

10 UpdateCorpDatabase (empRec);
11 estimRevenue = ytdRevenue * 4.0 / (double) crntQtr ;
12 newColor = prevColor ;
13 status = SUCCESS ;
14 if (expenseType == 1) {
15 for (i = 0; i < 12; i++)
16 profit [i] = revenue [i] - expense . type1 [i];
17 }
18 else if (expenseType == 2) {
19 profit [i] = revenue [i] - expense . type2 [i];
20 }
21 else if (expenseType == 3)
22 profit [i] = revenue [i] - expense . type3 [i];
23 }

1Steve McConnell. Code complete. Pearson Education, 2004.
H. Chen (CUNY-BC) Implementation May 3, 2022 5 / 19

Working Code vs. Beautiful Code

What’s Wrong with HandleStuff?

I The routine has a bad name; handleStuff tells you nothing about
what it does

I The input variable inputRec is changed. If it’s an input variable it
should not be modified (and declared const).

I It uses global variables (e.g. profit)
I It doesn’t have a single purpose. It does too many things: reading

from DB, some calculation which don’t have a common goal
I The routine does not defend itself against bad data
I Uses “magic” numbers (e.g. 100, 1, 2)
I Some of the parameters are unused
I Too many parameters
I Parameter names do not make their meaning obvious
I Others?

H. Chen (CUNY-BC) Implementation May 3, 2022 6 / 19

Working Code vs. Beautiful Code

Beautiful Code

Beautiful code: long-lasting code that is easy to evolve.2

How do we create beautiful code? We discuss several ideas,
I Don’t Repeat Yourself (DRY)
I Clarity via Conciseness
I Idiomatic Code

2Armando Fox, David A Patterson, and Samuel Joseph. Engineering software as a service:
an agile approach using cloud computing. Strawberry Canyon LLC, 2013.

H. Chen (CUNY-BC) Implementation May 3, 2022 7 / 19

Working Code vs. Beautiful Code CODE should be DRY

Writing DRY Code

Your code should be DRY!

DRY = Don’t Repeat Yourself
I If you are about to write repetitive code, stop!
I Refactor into a function; or
I Refactor into a class / abstract class; or
I Create a library or a module

Modern IDEs can detect repetitive code – a code smell

H. Chen (CUNY-BC) Implementation May 3, 2022 8 / 19

Working Code vs. Beautiful Code CODE should be DRY

Why DRY Code

I Modularity – Some parts of the code are easier to replace if they are
in a routine, without disturbing the rest of the implementation

I Testing – Easier to perform tests
I Single Optimization Point – You can optimize the code in one place

instead of several
I Reduce Complexity – Place code in the routine so that you don’t have

to think about it after it is written
I Introduce Abstraction – Putting a section of code into a well named

routine/class/module/package is one of the best ways to document
its purpose

H. Chen (CUNY-BC) Implementation May 3, 2022 9 / 19

Working Code vs. Beautiful Code Clarity

Clarity via Conciseness

I Syntax: shorter and easier to read, e.g., (via Google Guava)
theDigits = CharMatcher.DIGIT.retainFrom(string);

I Avoid long statements (if you can)
I Avoid redundant words (if you can)
I But YOU CAN and SHOULD give comprehensible variable, method

and class names!

H. Chen (CUNY-BC) Implementation May 3, 2022 10 / 19

Working Code vs. Beautiful Code Clarity

Self Documenting Code

Code should be self-documenting
I Comments should be useful high-level descriptions of what the

program is doing. They should not restate something that is
“obvious”.

I Self documenting code uses well chosen variable names (and function
names) to make the code read as close to English as possible
I For example, naming a variable g has little meaning, but naming a

variable gravity gives a much better description of what the variable
should contain.

I By using proper variable and function names, you should minimize the
amount of "external" documentation that is necessary.

H. Chen (CUNY-BC) Implementation May 3, 2022 11 / 19

Working Code vs. Beautiful Code Clarity

Self Documenting Code: Example

Compare the following two, which one is more self-documenting?
1 List <String > l = new ArrayList <String >();
2 l.add(" hello ");
3 l.add(" world ");
4 l.add("one");

versus
1 List <String > listOfWords = ImmutableList .of(" hello ", " world "

, "!")

H. Chen (CUNY-BC) Implementation May 3, 2022 12 / 19

Working Code vs. Beautiful Code Writing Idiomatic Code

Writing Idiomatic Code

I Coding conventions detail:
I how the code should look like (i.e., esthetics)
I how some specific aspects of the code should be handled (e.g.

exceptions), e.g.,
I where and when should I place curly brackets?
I how should I name variables? spacing?

I Various projects and domains have their own conventions
I Check if you want to contribute code

H. Chen (CUNY-BC) Implementation May 3, 2022 13 / 19

Working Code vs. Beautiful Code Writing Idiomatic Code

Coding Convension: Example

Coding conventions for Android contributors

https://source.android.com/setup/contribute/code-style

H. Chen (CUNY-BC) Implementation May 3, 2022 14 / 19

https://source.android.com/setup/contribute/code-style

Working Code vs. Beautiful Code Writing Idiomatic Code

Coding conventions for Android contributors: Examples

I Fully qualify imports (import A.B.c vs. import A.B.*)
I Order import statements (Android imports → third party imports →

java and javax)
I Write short methods (must be less than 40 LOC)
I Define Fields in Standard Places (fields should be defined either at

the top of the file, or immediately before the methods that use them)

H. Chen (CUNY-BC) Implementation May 3, 2022 15 / 19

Working Code vs. Beautiful Code Tools

Checkstyle Tool

Installed as a plugin in AndroidStudio

File -> Settings -> Plugins

Checks whether your program adheres to a set of style rules (e.g. Sun
rules, Google rules)

H. Chen (CUNY-BC) Implementation May 3, 2022 16 / 19

Working Code vs. Beautiful Code Tools

Lint Tool

Analyzes source code structure for known errors, bugs, and stylistic
problems.

Originates in Bell Labs in 1978 but many modern versions exist

For Android

https://developer.android.com/studio/write/lint

H. Chen (CUNY-BC) Implementation May 3, 2022 17 / 19

https://developer.android.com/studio/write/lint

Summary and Further Reading

Outline

1 Working Code vs. Beautiful Code
CODE should be DRY
Clarity
Writing Idiomatic Code
Tools

2 References

H. Chen (CUNY-BC) Implementation May 3, 2022 18 / 19

Summary and Further Reading

Summary

I Don’t Repeat Yourself (DRY)
I Clarity via Conciseness
I Idiomatic Code

I Tools: Checkstyle, Lint
What makes a great software engineer?
I Opinionis. Practice – the 10,000 hours of deliberate practice
I Research papers, e.g.,

I Li PL, Ko AJ, Zhu J. What makes a great software engineer?. In2015
IEEE/ACM 37th IEEE International Conference on Software
Engineering 2015 May 16 (Vol. 1, pp. 700-710). IEEE.

I . . .

H. Chen (CUNY-BC) Implementation May 3, 2022 19 / 19

References

Outline

1 Working Code vs. Beautiful Code
CODE should be DRY
Clarity
Writing Idiomatic Code
Tools

2 References

H. Chen (CUNY-BC) Implementation May 3, 2022 20 / 19

References

“Engineering Software as a Service” by Armando Fox and David Patterson
(2nd Edition)
“Introduction to Software Design with Java” by Martin P. Robillard
“Essentials of Software Engineering” by Frank Tsui, Orlando Karam, and
Barbara Bernal(4th Edition)

H. Chen (CUNY-BC) Implementation May 3, 2022 21 / 19

https://link.springer.com/book/10.1007/978-3-030-24094-3

	Working Code vs. Beautiful Code
	CODE should be DRY
	Clarity
	Writing Idiomatic Code
	Tools

	References

