
The SOLID OOP Principles

Hui Chen a

aCUNY Brooklyn College, Brooklyn, NY, USA

April 28, 2022

H. Chen (CUNY-BC) SOLID April 28, 2022 1 / 36

Outline

1 Project Meeting

2 SOLID

3 Single Responsibility Principle

4 Open-Closed Principle

5 Liskov Substitution Principle
Dependency Inversion Principle

6 Interface Separation Principle

7 Demeter Principle

8 References

H. Chen (CUNY-BC) SOLID April 28, 2022 2 / 36

Project Meeting

Outline

1 Project Meeting

2 SOLID

3 Single Responsibility Principle

4 Open-Closed Principle

5 Liskov Substitution Principle
Dependency Inversion Principle

6 Interface Separation Principle

7 Demeter Principle

8 References

H. Chen (CUNY-BC) SOLID April 28, 2022 3 / 36

Project Meeting

Project Meeting

Before next project iteration, each group should schedule a meeting with
me in this or the next week – more scheduling details will be on
Blackboard.

Agenda and Objectives
I Plan for next iteration
I Discuss group and individual progress
I Identify gaps and improvements
I Any issues you may have regarding the class

H. Chen (CUNY-BC) SOLID April 28, 2022 4 / 36

SOLID

Outline

1 Project Meeting

2 SOLID

3 Single Responsibility Principle

4 Open-Closed Principle

5 Liskov Substitution Principle
Dependency Inversion Principle

6 Interface Separation Principle

7 Demeter Principle

8 References

H. Chen (CUNY-BC) SOLID April 28, 2022 5 / 36

SOLID

SOLID Classes

Motivation: in order to minimize cost of change, we should to design
classes that are SOLID
I Single Responsibility principle
I Open/Closed principle
I Liskov substitution principle
I Interface Segregation Principle
I Demeter principle

H. Chen (CUNY-BC) SOLID April 28, 2022 6 / 36

SOLID

SOLID Classes

Motivation: in order to minimize cost of change, we should to design
methods that are SOFA, i.e.,
I the methods are Short,
I do One thing,
I have Few arguments, and
I have single level of Abstraction

SOLID concerns itself with designing classes, assuming the methods are
already SOFA

H. Chen (CUNY-BC) SOLID April 28, 2022 7 / 36

Single Responsibility Principle

Outline

1 Project Meeting

2 SOLID

3 Single Responsibility Principle

4 Open-Closed Principle

5 Liskov Substitution Principle
Dependency Inversion Principle

6 Interface Separation Principle

7 Demeter Principle

8 References

H. Chen (CUNY-BC) SOLID April 28, 2022 8 / 36

Single Responsibility Principle

Single Responsibility Principle

A class should have one and only one reason to change
I Each responsibility is a possible axis of change
I Changes to one axis shouldn’t affect others

What is class’s responsibility, in a sensor or two?
I Part of the craft of OO design is defining responsibilities and then

sticking to them
Let’s consider examples:
I An instance of the User class is a moviegoer, and an authentication

principal, and a social network member, ... Bad!

H. Chen (CUNY-BC) SOLID April 28, 2022 9 / 36

Single Responsibility Principle

Detecting Violations

We can examine some metrics to detect possible violations of the Single
Responsibility Principle
I Lines of Code

I Usually, really big class files are a tip-off – lines of Code is a coarse
metric to detect this

I Lack of Cohesion of Methods (LCOM)

H. Chen (CUNY-BC) SOLID April 28, 2022 10 / 36

Single Responsibility Principle

Lack of Cohesion of Methods (LCOM)

A simple method to estimate LCOM,

LCOM = 1−
∑

(mi)
MV

(1)

where
I LCOM ∈ [0, 1]
I M = # of methods of the class
I V = # of instance or class variables of the class
I mi = # of class methods that access the i’th class variable

Observations:
I A class is utterly cohesive if all its methods use all its instance fields,

because
∑

(mi) = MV and then LCOM = 0
I High LCOM suggests possible violation of the Single Responsibility

Principle
H. Chen (CUNY-BC) SOLID April 28, 2022 11 / 36

Single Responsibility Principle

Discussion Question – which one is true?

Which one is true with regard to the Single Responsibility Principle
(SRP)?
I If a class respects SRP, its methods probably respect SOFA
I If a class’s methods respect SOFA, the class probably respects SRP

H. Chen (CUNY-BC) SOLID April 28, 2022 12 / 36

Open-Closed Principle

Outline

1 Project Meeting

2 SOLID

3 Single Responsibility Principle

4 Open-Closed Principle

5 Liskov Substitution Principle
Dependency Inversion Principle

6 Interface Separation Principle

7 Demeter Principle

8 References

H. Chen (CUNY-BC) SOLID April 28, 2022 13 / 36

Open-Closed Principle

The Open-Closed Principle

Classes should be open for extension, but closed for source modification.

H. Chen (CUNY-BC) SOLID April 28, 2022 14 / 36

Open-Closed Principle

Discussion Question

Is the following class open for extension, but closed for source
modification?

1 class Report {
2 void outputReport (String outputFormat) {
3 switch (outputFormat) {
4 case "html":
5 HtmlFormatter . output (this);
6 break ;
7 case "pdf":
8 PdfFormatter . output (this);
9 }

10 }

H. Chen (CUNY-BC) SOLID April 28, 2022 15 / 36

Open-Closed Principle

Discussion Question

Is the following class open for extension, but closed for source
modification?

1 class Report {
2 void outputReport (String outputFormat) {
3 switch (outputFormat) {
4 case "html":
5 HtmlFormatter . output (this);
6 break ;
7 case "pdf":
8 PdfFormatter . output (this);
9 }

10 }

Not the best, because can’t extend format (add new formatter types)
without changing Report class or know what its implementation details in
the outputReport method.

How to improve the design?

H. Chen (CUNY-BC) SOLID April 28, 2022 16 / 36

Open-Closed Principle

Discussion Question

Using the Strategy design pattern, we redesign the class as follows,
1 class Report {
2 Report (Formatter f) {
3 formatter = f;
4 }
5
6 void outputReport () {
7 formatter . output (this);
8 }
9 }

10
11 interface Formatter {
12 void output (Report report);
13 }
14
15 class PdfFormatter implements Formatter {...}
16 class HtmlFormatter implements Formatter {...}
17 class MsdocFormatter implements Formatter {...}

Any alternative way to redesign the class?

H. Chen (CUNY-BC) SOLID April 28, 2022 17 / 36

Open-Closed Principle

Practical Considerations

I Can’t close against all types of changes, so have to choose (make a
design decision), and we might make a wrong decision

I Agile methodology can help expose important types of changes early
I Scenario-driven design with prioritized features
I Short iterations
I Test-first development

Then we can try to apply the principle for those types of changes we
identify in each iteration

H. Chen (CUNY-BC) SOLID April 28, 2022 18 / 36

Liskov Substitution Principle

Outline

1 Project Meeting

2 SOLID

3 Single Responsibility Principle

4 Open-Closed Principle

5 Liskov Substitution Principle
Dependency Inversion Principle

6 Interface Separation Principle

7 Demeter Principle

8 References

H. Chen (CUNY-BC) SOLID April 28, 2022 19 / 36

Liskov Substitution Principle

Liskov Substitution Principle

Attributed to Barbara Liskov

“A method that works on an instance of type T, should also work on any
subtype of T”

Note that in dynamically typed languages often type/subtype !=
class/subclass

H. Chen (CUNY-BC) SOLID April 28, 2022 20 / 36

Liskov Substitution Principle

Discussion Question – does this follow the principle?

Source of the example: http://javacodegeeks.com/)
1 class Bird {
2 public void fly () {}
3 public void eat () {}
4 }
5 class Crow extends Bird {}
6 class Ostrich extends Bird{
7 fly (){ throw new UnsupportedOperationException (); }
8 }
9 public BirdTest {

10 public static void main(String [] args){
11 List <Bird > birdList = new ArrayList <Bird >();
12 birdList .add(new Bird ());
13 birdList .add(new Crow ());
14 birdList .add(new Ostrich ());
15 letTheBirdsFly (birdList);
16 }
17 static void letTheBirdsFly (List <Bird > birdList){
18 for (Bird b : birdList) { b.fly (); }
19 }
20 }

H. Chen (CUNY-BC) SOLID April 28, 2022 21 / 36

http://javacodegeeks.com/

Liskov Substitution Principle

Discussion Question – does this follow the principle?

How do we redesign it? Let’s consider additional design principles and
patterns ...
I Dependency Inversion Principle

H. Chen (CUNY-BC) SOLID April 28, 2022 22 / 36

Liskov Substitution Principle Dependency Inversion Principle

Dependency Inversion Principle

Problem: A depends on B, but B’s interface & implementation can
change, even if functionality is stable

Solution: insert an abstract interface that A & B depend on
I An example of the Observer, Adapter, or sometimes Facade design

pattern
I Dependence Inversion: now B (and A) depend on interface, vs. A

depending on B – the dependencies are inversed

H. Chen (CUNY-BC) SOLID April 28, 2022 23 / 36

Interface Separation Principle

Outline

1 Project Meeting

2 SOLID

3 Single Responsibility Principle

4 Open-Closed Principle

5 Liskov Substitution Principle
Dependency Inversion Principle

6 Interface Separation Principle

7 Demeter Principle

8 References

H. Chen (CUNY-BC) SOLID April 28, 2022 24 / 36

Interface Separation Principle

Interface Separation Principle

Clients should not be forced to depend on interfaces they do not need.

Discussed before

H. Chen (CUNY-BC) SOLID April 28, 2022 25 / 36

Interface Separation Principle

Discussion Question – How do we redesign this?

Source of the example: http://javacodegeeks.com/)
1 class Bird {
2 public void fly () {}
3 public void eat () {}
4 }
5 class Crow extends Bird {}
6 class Ostrich extends Bird{
7 fly (){ throw new UnsupportedOperationException (); }
8 }
9 public BirdTest {

10 public static void main(String [] args){
11 List <Bird > birdList = new ArrayList <Bird >();
12 birdList .add(new Bird ());
13 birdList .add(new Crow ());
14 birdList .add(new Ostrich ());
15 letTheBirdsFly (birdList);
16 }
17 static void letTheBirdsFly (List <Bird > birdList){
18 for (Bird b : birdList) { b.fly (); }
19 }
20 }

H. Chen (CUNY-BC) SOLID April 28, 2022 26 / 36

http://javacodegeeks.com/

Demeter Principle

Outline

1 Project Meeting

2 SOLID

3 Single Responsibility Principle

4 Open-Closed Principle

5 Liskov Substitution Principle
Dependency Inversion Principle

6 Interface Separation Principle

7 Demeter Principle

8 References

H. Chen (CUNY-BC) SOLID April 28, 2022 27 / 36

Demeter Principle

The Demeter Principle

A class should only know about the methods of other classes, not their
internals

H. Chen (CUNY-BC) SOLID April 28, 2022 28 / 36

Demeter Principle

The Demeter Principle

What should we consider for this principle?
I e.g., avoid getter methods
I In practice: only talk to our friends ... not strangers, which means,

I We can call methods on ourselves, use our own instance variables and
parameters passed to the method

I But not on the results returned by them

H. Chen (CUNY-BC) SOLID April 28, 2022 29 / 36

Demeter Principle

Discussion Question

Does this violate Demeter?
1 Options options = context . getOptions ();
2 File scratchDir = opts. getScratchDir ();
3 final string outputDir = scratchDir . getAbsolutePath ();

or equivalently,
1 final string outputDir = context . getOptions ()
2 . getScratchDir ()
3 . getAbsolutePath ();

H. Chen (CUNY-BC) SOLID April 28, 2022 30 / 36

Demeter Principle

Discussion Question

Does this violate Demeter?
I Yes, if we consider Options and File as objects

1 Options options = context . getOptions ();
2 File scratchDir = opts. getScratchDir ();
3 final string outputDir = scratchDir . getAbsolutePath ();

or equivalently,
1 final string outputDir = context . getOptions ()
2 . getScratchDir ()
3 . getAbsolutePath ();

How do we fix this?

H. Chen (CUNY-BC) SOLID April 28, 2022 31 / 36

Demeter Principle

Discussion Question

Examining what we really use the otuputDir for, we revise the context
manager so that,

1 BufferedOutputWriter outputWriter = ctxt. getOutputWriter ()

H. Chen (CUNY-BC) SOLID April 28, 2022 32 / 36

Demeter Principle

Summary and Questions

SOLID
I Single Responsibility principle
I Open/Closed principle
I Liskov substitution principle
I Interface Segregation Principle
I Demeter principle

Dependency Inversion Principle

Let’s do an exercise ...

H. Chen (CUNY-BC) SOLID April 28, 2022 33 / 36

References

Outline

1 Project Meeting

2 SOLID

3 Single Responsibility Principle

4 Open-Closed Principle

5 Liskov Substitution Principle
Dependency Inversion Principle

6 Interface Separation Principle

7 Demeter Principle

8 References

H. Chen (CUNY-BC) SOLID April 28, 2022 34 / 36

References

“Engineering Software as a Service” by Armando Fox and David Patterson
(2nd Edition)
“Introduction to Software Design with Java” by Martin P. Robillard
“Essentials of Software Engineering” by Frank Tsui, Orlando Karam, and
Barbara Bernal(4th Edition)

H. Chen (CUNY-BC) SOLID April 28, 2022 35 / 36

https://link.springer.com/book/10.1007/978-3-030-24094-3

	Project Meeting
	SOLID
	Single Responsibility Principle
	Open-Closed Principle
	Liskov Substitution Principle
	Dependency Inversion Principle

	Interface Separation Principle
	Demeter Principle
	References

