
The Strategy, Iterator, and Singleton Design Patterns

Hui Chen a

aCUNY Brooklyn College, Brooklyn, NY, USA

April 26, 2022

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 1 / 26

Outline

1 Project Meeting

2 Background

3 Strategy Pattern
Recap: Comparator
The Strategy Design Pattern

4 Iterator Pattern

5 Singleton Pattern

6 References

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 2 / 26

Project Meeting

Outline

1 Project Meeting

2 Background

3 Strategy Pattern
Recap: Comparator
The Strategy Design Pattern

4 Iterator Pattern

5 Singleton Pattern

6 References

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 3 / 26

Project Meeting

Project Meeting

Before next project iteration, each group should schedule a meeting with
me in this or the next week – more scheduling details will be on
Blackboard.

Agenda and Objectives
I Plan for next iteration
I Discuss group and individual progress
I Identify gaps and improvements
I Any issues you may have regarding the class

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 4 / 26

Background

Outline

1 Project Meeting

2 Background

3 Strategy Pattern
Recap: Comparator
The Strategy Design Pattern

4 Iterator Pattern

5 Singleton Pattern

6 References

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 5 / 26

Background

Software Design

I Design starts mostly from/with requirements – evolving mostly from
functionalities and other non-functional characteristics
I In the waterfall model Design generally occurs after Requirements
I In agile, design is performed during in each iteration

I To answer: How is the software solution going to be structured?
I What are the main components – (functional composition) often

directly from requirements’ functionalities (e.g., use cases, user stories,
scenarios)

I How are these components related? – Possibly re-organize the
components (composition/decomposition)

I Two main levels of design:
I Architectural (high level) design
I Detailed design
I Different design concerns at different abstraction levels (e.g. classes vs.

modules vs. entire system)
I How should we depict design – what notation/language?

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 6 / 26

Background

Review: High-level and Low-level Designs

Architectural design (high-level design) patterns and styles
I MVC, Layered, Pipeline, Client-Server, SOA, . . .

Detailed design (low-level design)
I Functional decomposition, database design, Object-Oriented design,

user-interface design, . . .

I Object-Oriented Design and UML – focused on modeling
I To discuss more about Object-Oriented design

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 7 / 26

Strategy Pattern

Outline

1 Project Meeting

2 Background

3 Strategy Pattern
Recap: Comparator
The Strategy Design Pattern

4 Iterator Pattern

5 Singleton Pattern

6 References

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 8 / 26

Strategy Pattern

Strategy Design Pattern

Source: Module 2 by Martin Robillard
I the Review Comparator interface
I the Strategy Design Pattern

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 9 / 26

https://github.com/prmr/SoftwareDesign/blob/master/modules/Module-02.md

Strategy Pattern Recap: Comparator

Java Interface Revisited

Let’s consider Java interface Comparator
I How is it defined?
I How can it be used?

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 10 / 26

Strategy Pattern Recap: Comparator

The Comparator Interface

Let’s consider Java interface Comparator
I How is it defined?

1 interface Comparator <T> {
2 int compare (T obj1 , T obj2)
3 }

I How can it be used?
1 sort(List <T> list , Comparator <? super T> c)

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 11 / 26

Strategy Pattern Recap: Comparator

The Comparator Interface

Let’s consider Java interface Comparator
I How is it defined?

1 interface Comparator <T> {
2 int compare (T obj1 , T obj2)
3 }
4
5 ‘‘{\em Compares its two arguments for order . Returns a

negative integer , zero , or a
6 positive integer as the first argument is less than ,

equal to , or greater than
7 the second .} ’’

I How can it be used?
1 sort(List <T> list , Comparator <? super T> c)

Sorting often requires a comparator specific for a type – e.g. sorting
instances of type Card, requires a Comparator for playing cards

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 12 / 26

Strategy Pattern Recap: Comparator

How is it designed?

How does the design come to be?

Comparator epitomizes a design pattern, called the Strategy desgin
pattern.

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 13 / 26

Strategy Pattern The Strategy Design Pattern

The Stategy Design Pattern

“Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithms vary independently from
clients that use it.” – from the Gang of Four Book

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 14 / 26

Strategy Pattern The Strategy Design Pattern

The Stategy Design Pattern: Example

Consider that we need to sort a deck of cards

Let’s discuss,
1. Does this design have Extensibility?
2. Does this design have Loose Coupling?

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 15 / 26

Iterator Pattern

Outline

1 Project Meeting

2 Background

3 Strategy Pattern
Recap: Comparator
The Strategy Design Pattern

4 Iterator Pattern

5 Singleton Pattern

6 References

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 16 / 26

Iterator Pattern

Recap: Violations of Class Design Guidelines
1 public class Deck
2 {
3 // violates 1. public -> no door to guide the data field
4 public Stack <Card > aCards = new Stack < >();
5
6 // violates 4. return reference to a class variable -> font door

is open
7 public Stack <Card > getCards ()
8 { return aCards ; }
9

10 /* violates 2 and 3. set a reference to a class variable ; but
caller

11 keeps a reference -- back door open because caller has a
reference

12 to containing object */
13 public void setStack (Stack <Card > pCards)
14 { aCards = pCards ; }
15
16 /* violates 3. set a reference to a class variable ; but caller
17 keeps a reference -- back door open because caller has a

reference
18 to containing object */
19 public void applyAll (List <Stack <Card >> pTaskList)
20 { pTaskList .add(aCards); }
21 }

Perhaps, the Deck class was ill-conceptualized ... what we really want to
iterate over the deck of cards, then ...

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 17 / 26

Iterator Pattern

The Iterator Design Pattern

“Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation” – from the Gang of Four
book

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 18 / 26

Iterator Pattern

The Iterator Design Pattern: Example

With this design, we do not expose its underlying representation of the
“state”.

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 19 / 26

Singleton Pattern

Outline

1 Project Meeting

2 Background

3 Strategy Pattern
Recap: Comparator
The Strategy Design Pattern

4 Iterator Pattern

5 Singleton Pattern

6 References

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 20 / 26

Singleton Pattern

The Singleton Design Pattern: Motivation

Singleton: Ensuring there’s only one of something
I Technically, a class that provides only 1 instance, which anyone can

access
A static class? But it would be nicer if we can instantiate something – use
the singleton pattern.
I It provides a principled way to ensure that there is only one instance

of a given class as any point in the execution of a program.
I It is useful to simplify the access to stateful objects that typically

assume the role of a controller of some sort.
I e.g., contoller in MVC?

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 21 / 26

Singleton Pattern

The Singleton Design Pattern: Implementation

I A private constructor for the Singleton, so clients cannot create
duplicate objects;

I A static final field keeping a reference to the single instance of the
singleton object.

I A static accessor method, usually called instance(), that returns
the unique instance of the Singleton.

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 22 / 26

Singleton Pattern

The Singleton Design Pattern: Example

1 public class Controller {
2 // static final field referencing to an instance of this

class
3 private final static Controller _instance = new Controller ()

;
4
5 // static accessor method
6 public static Controller instance () {
7 return _instance ;
8 }
9

10 // constructor is private
11 private Controller () {
12 // Initialize members here , like various views .
13 }
14 }

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 23 / 26

Singleton Pattern

Summary and Questions?

I The Strategy design pattern
I The Iterator design pattern
I The Singleton design pattern
I Questions?

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 24 / 26

References

Outline

1 Project Meeting

2 Background

3 Strategy Pattern
Recap: Comparator
The Strategy Design Pattern

4 Iterator Pattern

5 Singleton Pattern

6 References

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 25 / 26

References

“Introduction to Software Design with Java” by Martin P. Robillard
“Engineering Software as a Service” by Armando Fox and David Patterson
(2nd Edition)
“Essentials of Software Engineering” by Frank Tsui, Orlando Karam, and
Barbara Bernal(4th Edition)

H. Chen (CUNY-BC) Strategy, Iterator, Singleton April 26, 2022 26 / 26

https://link.springer.com/book/10.1007/978-3-030-24094-3

	Project Meeting
	Background
	Strategy Pattern
	Recap: Comparator
	The Strategy Design Pattern

	Iterator Pattern
	Singleton Pattern
	References

