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Software Design

» Design starts mostly from/with requirements — evolving mostly from
functionalities and other non-functional characteristics

> In the waterfall model Design generally occurs after Requirements
» In agile, design is performed during in each iteration

» To answer: How is the software solution going to be structured?
» What are the main components — (functional composition) often

directly from requirements’ functionalities (e.g., use cases, user stories,
scenarios)

»> How are these components related? — Possibly re-organize the
components (composition/decomposition)
> Two main levels of design:
» Architectural (high level) design
> Detailed design
> Different design concerns at different abstraction levels (e.g. classes vs.
modules vs. entire system)
» How should we depict design — what notation/language?
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_ From Requirements to Design
Detailed Design

Discussed and to discuss
» Functional decomposition
» Database design
» Objected-Oriented desgn and Unified Modeling Language (UML)
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. software Modcling
Why model software?

» Engineers have always modeled things they are planning to build
» Displays a engineered system at a particular level of abstraction
» Helps one think clearly about the system

» Crucial in communicating to others the structure of a system

> Makes working in a team possible

Discussed models of database and Ul design
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. software Modcling
Some History

» Models have always existed in software
» In fact, at a point there were too many of them which made it difficult
to translate between them
» Companies using certain models would go out of business, rendering
models useless
» The Object Management Group (OMG) a consortium of many
companies drafted the Unified Modeling Language (UML) standard
» This is now the de facto standard for most SW modeling
» Now we are at UML version 2.5
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-
UML

UML is a graphical language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system

» Consists of several different diagram types
» Can be used at different abstraction levels
» from business processes to individual language statements

Note: it's a language, not a method or procedure
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-
Modeling a Simple Application

Consider a dice game application

» Play a Dice Game: Roll two dice. If the dice value totals seven, player
wins; otherwise, player loses
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Modeling the Dice Game

A UML class diagram

DiceGame

diet :
die2 :

Die
Die

Die

play()

Note. This is part of the whole model (you may have more classes ...)
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faceValue : int

roll()

getFaceValue() : int
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Modeling the Dice Game

A UML sequence diagram

:DiceGame diel : Die die2 : Die
T T
play() , ; ;
roll() ’1D |
|
|
fv1l = getFaceVaIlie? }
] 1
roll() ! o |
i ]
| |
fv2 ;= getFaceyaIue() |
T } |

Note. This is part of the whole model (you may have more classes and
scenarios ...)
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. uwwDisgams
UML Diagrams

UML 2 defines 13 basic diagram types, divided into two general sets:

» Structural Modeling Diagrams — Used to model the “things” that
make up a model, such as, the classes, objects, interfaces and
physical components. In addition, they are used to model the
relationships and dependencies between elements

» Behavioral Modeling Diagrams — Capture the varieties of interaction
and instantaneous states within a model as it “executes” over time;
tracking how the system will act in a real-world environment, and
observing the effects of an operation or event, including its results
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. uwwDisgams
Structural Modeling Diagrams

» Class diagrams define the basic building blocks of a model: the types,
classes and general materials used to construct a full model.

» Object diagrams show how instances of structural elements are
related and used at run-time

» Component diagrams are used to model higher level or more complex
structures, usually built up from one or more classes, and providing a
well defined interface.

» Deployment diagrams show the physical disposition of significant
artifacts within a real-world setting.

» and Package and Composite structure diagrams
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Behavioral Modeling Diagrams

| 2

>

>

Use Case diagrams are used to model user/system interactions. They
define behavior, requirements and constraints in the form of scripts or
scenarios.

State Machine diagrams are essential to understanding the instant to
instant condition, or "run state" of a model when it executes.
Communication diagrams show the network, and sequence, of
messages or communications between objects at run-time, during a
collaboration instance.

Sequence diagrams are closely related to communication diagrams
and show the sequence of messages passed between objects using a
vertical timeline.

Timing diagrams fuse sequence and state diagrams to provide a view
of an object's state over time, and messages which modify that state.

and Activity, Interaction oveview diagrams
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UML Object-Constraint Language (OCL)

» A language intended to provide some rules to a UML diagram
» Mathematical in nature, it specifies some properties that must be met
in order for the model to be used appropriately

» First order predicate calculus
» Invariants, preconditions, postconditions etc.
> Examples: all parameters must be > 0, result must not be an empty list

H. Chen (CUNY-BC) umL March 31, 2022  19/44



The Dice Game: Example OCL

DiceGame

diet :
die2 :

Die
Die

Die

play()

context Die

_| faceValue : int

getFaceValue() : int

roll()

inv: faceValue >= 1 and faceValue <= 6

context Die::getFaceValue
post: result =
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Explaining the Example: Invariant

Definition
» An invariant is a constraint that should be true for an object during
its complete lifetime.

» Invariants often represent rules that should hold for the real-life
objects after which the software objects are modeled.

> Syntax

context <classifier>
inv [<constraint name>]: <Boolean OCL expression>
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Explaining the Example: Postcondition

Definition
» Constraint that must be true just after to the execution of an
operation
» Postconditions are the way how the actual effect of an operation is
described in OCL.

> Syntax

context <classifier>::<operation> (<parameters>)
post [<constraint name>]:
<Boolean OCL expression>
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ML Object-Constraint Language (OCL) |
Model-Driven Architecture

> MDA is a process that may use UML, or another modeling approach
to bring development closer to the domain expert (user)
P User expresses the application’s needs in a model he or she understands
» Code is generated based on the model
» Some refinement takes place from model that is completely in the
customer’s domain, to one that is closer to the actual deployment
> Platform Independent Model (PIM)
> Platform Specific Model (PSM)
> Platform Definition Model (PDM)
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_ Moreabout UML Diagrams
Discussing Several UML Diagrams

Several UML diagrams perhaps are frequently used than the others,
» Class diagrams
» Use Case diagrams

» Sequence diagrams
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UML Class Diagram

» Probably the most popular diagram in UML
» Encodes classes and relationships between them

> An example of a structural diagram
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Representing Class

> attributes and operations, can be of several types of visibility:
> + (public);
> — (private);
> # (protected);
> ~ (package)

» define an array using the [] syntax

shape::Circle

— radius: double
— center: Point

+ area(): double

+ circumference(): double
+ setCenter(p: Point)

+ setRadius(r: double)
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Representing Relations
» Association

> Aggregation

» Composition
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Representing Association

shape::Circle

— radius: double shape::Point
— center: Point mCircle center

+ x: double
+ area(): double 1 1 + y: double
+ circumference(): double
+ setCenter(p: Point)

+ setRadius(r: double)
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Representing Aggregation — Make Better Sense?

shape::Circle

— radius: double

shape::Point
— center: Point c
center + x: double
+ area(): double 1 + y: double
+ circumference(): double
+ setCenter(p: Point)

+ setRadius(r: double)
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N 2= Diocrars
Representing Composition — Make Sense At All?

shape::Circle

— radius: double

shape::Point
— center: Point c
center + x: double
+ area(): double 1 + y: double
+ circumference(): double
+ setCenter(p: Point)

+ setRadius(r: double)
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Putting These Together

shape::GeometricObject

shape::Circle

shape::Center

— center: Center

shape::Point

— point: Point

» In this model, we encode that Center cannot exist without Circle.

» What else do we encode here?
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Use Case Diagrams

» Use Case diagram is behavioral
P> Recall that Class diagram is structural while Use Case and Sequence
diagrams are behavioral
» Maps to user stories (i.e. requirements)
» Describes the outside view of the system — from the point of view of a

set of actors
» Models system actions that yield an observable result
» Simple, but effective for several purposes
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Elements of Use Case Diagrams

Use case (with a name)

Actor (human or device that interacts with system)

T

Actor
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Rules for Use Case Diagrams

» Actors

> e.g. Employee, Manager, AppUser

> external to system (humans or devices)
P interact with system

P> may appear in many use cases

> Use Cases
P brief title of an interaction with the system
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Use Case Diagram: A Simple Example

Transfer Medical Record

Medical Receptionist Patient Record System
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Use Case Diagram: More Complex Example

system boundary NextGen POS _ — communication
N -~
~_ 4 -
% — alternate
notation for
Customer a computer
Payment system actor
Authorization o - 1
. Service /
- /
I Handle Returns ;
\ «actor» .
30107 Gashier Tax Calculator
«actor»
Accounting
System
Manager
«actor» Analyze Activity H;asc‘m;;m
Sales Activity ] st
System
Manage Security ) o _
/ - o~ ~

— | N
System Manage Users N
Administrator use case
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Why are use case diagrams important?

P> Requirements elicitation and organization — e.g. to help show how
different user stories are related

» Planning — e.g. to prioritize users or scenarios
P> Testing — e.g. help in constructing acceptance tests with good
coverage
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_ someAdvice for UML Modcling
Key ideas in software modeling with UML

> Names are important — give good names to classes in class diagrams,
use cases, etc.

» Provide only essential details — avoid over-modeling

> Keep the model up to date — easy for the model to lose it's usefulness
if it's outdated
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R
Tool Support

Many specialized tools exists
» Some integrated in IDEs

» Extensions for Eclipse or other IDEs (e.g. Sparx)
» Visual Studio has native support for class and sequence diagrams

» Standalone (e.g. MS Visio)
» On the cloud (Draw.io etc.)
A lot depends of whether you want OCL or MDA/MDD capabilities
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Summary and Questions

Object-Oriented Design using UML
» Overview of UML
» Diagrams

> UML Class diagrams
> UML Use Case diagrams
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“Engineering Software as a Service” by Armando Fox and David Patterson
(2nd Edition)

“Essentials of Software Engineering” by Frank Tsui, Orlando Karam, and
Barbara Bernal(4th Edition)
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