Object-Oriented Design and UML J

Hui Chen @

2CUNY Brooklyn College, Brooklyn, NY, USA

March 31, 2022

H. Chen (CUNY-BC) umML March 31, 2022 1/44

Outline

@ From Requirements to Design

© Software Modeling

© Overview of UML

@ UML Diagrams

© UML Object-Constraint Language (OCL)

@ More about UML Diagrams
@ Class Diagrams
@ Use Case Diagrams

@ Some Advice for UML Modeling
© References

H. Chen (CUNY-BC) umL March 31, 2022 2/44

.~ From Requirements to Design |
Outline

@ From Requirements to Design

H. Chen (CUNY-BC) umL March 31, 2022 3/44

Software Design

» Design starts mostly from/with requirements — evolving mostly from
functionalities and other non-functional characteristics

> In the waterfall model Design generally occurs after Requirements
» In agile, design is performed during in each iteration

» To answer: How is the software solution going to be structured?
» What are the main components — (functional composition) often

directly from requirements’ functionalities (e.g., use cases, user stories,
scenarios)

»> How are these components related? — Possibly re-organize the
components (composition/decomposition)
> Two main levels of design:
» Architectural (high level) design
> Detailed design
> Different design concerns at different abstraction levels (e.g. classes vs.
modules vs. entire system)
» How should we depict design — what notation/language?

H. Chen (CUNY-BC) UML March 31, 2022 4/44

_ From Requirements to Design
Detailed Design

Discussed and to discuss
» Functional decomposition
» Database design
» Objected-Oriented desgn and Unified Modeling Language (UML)

H. Chen (CUNY-BC) umL March 31, 2022 5/44

.~ Software Modeling |
Outline

© Software Modeling

H. Chen (CUNY-BC) umL March 31, 2022 6/44

. software Modcling
Why model software?

» Engineers have always modeled things they are planning to build
» Displays a engineered system at a particular level of abstraction
» Helps one think clearly about the system

» Crucial in communicating to others the structure of a system

> Makes working in a team possible

Discussed models of database and Ul design

H. Chen (CUNY-BC) umL March 31, 2022 7/44

. software Modcling
Some History

» Models have always existed in software
» In fact, at a point there were too many of them which made it difficult
to translate between them
» Companies using certain models would go out of business, rendering
models useless
» The Object Management Group (OMG) a consortium of many
companies drafted the Unified Modeling Language (UML) standard
» This is now the de facto standard for most SW modeling
» Now we are at UML version 2.5

H. Chen (CUNY-BC) UML March 31, 2022 8/44

. OveriewofUML
Outline

© Overview of UML

H. Chen (CUNY-BC) umL March 31, 2022 9/44

-
UML

UML is a graphical language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system

» Consists of several different diagram types
» Can be used at different abstraction levels
» from business processes to individual language statements

Note: it's a language, not a method or procedure

H. Chen (CUNY-BC) UML March 31, 2022 10/44

-
Modeling a Simple Application

Consider a dice game application

» Play a Dice Game: Roll two dice. If the dice value totals seven, player
wins; otherwise, player loses

H. Chen (CUNY-BC) umL March 31, 2022 11/44

Modeling the Dice Game

A UML class diagram

DiceGame

diet :
die2 :

Die
Die

Die

play()

Note. This is part of the whole model (you may have more classes ...)

H. Chen (CUNY-BC)

UML

faceValue : int

roll()

getFaceValue() : int

March 31, 2022

12/44

-
Modeling the Dice Game

A UML sequence diagram

:DiceGame diel : Die die2 : Die
T T
play() , ; ;
roll() ’1D |
|
|
fv1l = getFaceVaIlie? }
] 1
roll() ! o |
i]
| |
fv2 ;= getFaceyaIue() |
T } |

Note. This is part of the whole model (you may have more classes and
scenarios ...)

H. Chen (CUNY-BC) umL March 31, 2022 13/44

. uwmLDiagrams |
Outline

@ UML Diagrams

H. Chen (CUNY-BC) umL March 31, 2022 14/44

. uwwDisgams
UML Diagrams

UML 2 defines 13 basic diagram types, divided into two general sets:

» Structural Modeling Diagrams — Used to model the “things” that
make up a model, such as, the classes, objects, interfaces and
physical components. In addition, they are used to model the
relationships and dependencies between elements

» Behavioral Modeling Diagrams — Capture the varieties of interaction
and instantaneous states within a model as it “executes” over time;
tracking how the system will act in a real-world environment, and
observing the effects of an operation or event, including its results

H. Chen (CUNY-BC) UML March 31, 2022 15/44

. uwwDisgams
Structural Modeling Diagrams

» Class diagrams define the basic building blocks of a model: the types,
classes and general materials used to construct a full model.

» Object diagrams show how instances of structural elements are
related and used at run-time

» Component diagrams are used to model higher level or more complex
structures, usually built up from one or more classes, and providing a
well defined interface.

» Deployment diagrams show the physical disposition of significant
artifacts within a real-world setting.

» and Package and Composite structure diagrams

H. Chen (CUNY-BC) UML March 31, 2022 16 /44

Behavioral Modeling Diagrams

| 2

>

>

Use Case diagrams are used to model user/system interactions. They
define behavior, requirements and constraints in the form of scripts or
scenarios.

State Machine diagrams are essential to understanding the instant to
instant condition, or "run state" of a model when it executes.
Communication diagrams show the network, and sequence, of
messages or communications between objects at run-time, during a
collaboration instance.

Sequence diagrams are closely related to communication diagrams
and show the sequence of messages passed between objects using a
vertical timeline.

Timing diagrams fuse sequence and state diagrams to provide a view
of an object's state over time, and messages which modify that state.

and Activity, Interaction oveview diagrams

H. Chen (CUNY-BC) UML March 31, 2022 17 /44

ML Object-Constraint Language (OCL) |
Outline

© UML Object-Constraint Language (OCL)

H. Chen (CUNY-BC) umL March 31, 2022 18/44

.~ UM Object-Constraint Language (OCL) |
UML Object-Constraint Language (OCL)

» A language intended to provide some rules to a UML diagram
» Mathematical in nature, it specifies some properties that must be met
in order for the model to be used appropriately

» First order predicate calculus
» Invariants, preconditions, postconditions etc.
> Examples: all parameters must be > 0, result must not be an empty list

H. Chen (CUNY-BC) umL March 31, 2022 19/44

The Dice Game: Example OCL

DiceGame

diet :
die2 :

Die
Die

Die

play()

context Die

_| faceValue : int

getFaceValue() : int

roll()

inv: faceValue >= 1 and faceValue <= 6

context Die::getFaceValue
post: result =

H. Chen (CUNY-BC)

faceValue

UML

March 31, 2022

20 /44

Explaining the Example: Invariant

Definition
» An invariant is a constraint that should be true for an object during
its complete lifetime.

» Invariants often represent rules that should hold for the real-life
objects after which the software objects are modeled.

> Syntax

context <classifier>
inv [<constraint name>]: <Boolean OCL expression>

H. Chen (CUNY-BC) umL March 31, 2022 21/44

Explaining the Example: Postcondition

Definition
» Constraint that must be true just after to the execution of an
operation
» Postconditions are the way how the actual effect of an operation is
described in OCL.

> Syntax

context <classifier>::<operation> (<parameters>)
post [<constraint name>]:
<Boolean OCL expression>

H. Chen (CUNY-BC) umL March 31, 2022 22/44

ML Object-Constraint Language (OCL) |
Model-Driven Architecture

> MDA is a process that may use UML, or another modeling approach
to bring development closer to the domain expert (user)
P User expresses the application’s needs in a model he or she understands
» Code is generated based on the model
» Some refinement takes place from model that is completely in the
customer’s domain, to one that is closer to the actual deployment
> Platform Independent Model (PIM)
> Platform Specific Model (PSM)
> Platform Definition Model (PDM)

H. Chen (CUNY-BC) UML March 31, 2022 23 /44

~ Moreabout UML Diagrams |
Outline

@ More about UML Diagrams
@ Class Diagrams
@ Use Case Diagrams

H. Chen (CUNY-BC) UML

March 31, 2022

24 /44

_ Moreabout UML Diagrams
Discussing Several UML Diagrams

Several UML diagrams perhaps are frequently used than the others,
» Class diagrams
» Use Case diagrams

» Sequence diagrams

H. Chen (CUNY-BC) umL March 31, 2022 25/44

N . = o
UML Class Diagram

» Probably the most popular diagram in UML
» Encodes classes and relationships between them

> An example of a structural diagram

H. Chen (CUNY-BC) UML March 31, 2022

26 /44

Representing Class

> attributes and operations, can be of several types of visibility:
> + (public);
> — (private);
> # (protected);
> ~ (package)

» define an array using the [] syntax

shape::Circle

— radius: double
— center: Point

+ area(): double

+ circumference(): double
+ setCenter(p: Point)

+ setRadius(r: double)

H. Chen (CUNY-BC) UML March 31, 2022 27 /44

Representing Relations
» Association

> Aggregation

» Composition

H. Chen (CUNY-BC) umL March 31, 2022 28/44

Representing Association

shape::Circle

— radius: double shape::Point
— center: Point mCircle center

+ x: double
+ area(): double 1 1 + y: double
+ circumference(): double
+ setCenter(p: Point)

+ setRadius(r: double)

H. Chen (CUNY-BC) umL March 31, 2022 29/44

Representing Aggregation — Make Better Sense?

shape::Circle

— radius: double

shape::Point
— center: Point c
center + x: double
+ area(): double 1 + y: double
+ circumference(): double
+ setCenter(p: Point)

+ setRadius(r: double)

H. Chen (CUNY-BC) umL March 31, 2022 30/44

N 2= Diocrars
Representing Composition — Make Sense At All?

shape::Circle

— radius: double

shape::Point
— center: Point c
center + x: double
+ area(): double 1 + y: double
+ circumference(): double
+ setCenter(p: Point)

+ setRadius(r: double)

H. Chen (CUNY-BC) umL March 31, 2022 31/44

Putting These Together

shape::GeometricObject

shape::Circle

shape::Center

— center: Center

shape::Point

— point: Point

» In this model, we encode that Center cannot exist without Circle.

» What else do we encode here?

H. Chen (CUNY-BC)

UML

March 31, 2022

32/44

Use Case Diagrams

» Use Case diagram is behavioral
P> Recall that Class diagram is structural while Use Case and Sequence
diagrams are behavioral
» Maps to user stories (i.e. requirements)
» Describes the outside view of the system — from the point of view of a

set of actors
» Models system actions that yield an observable result
» Simple, but effective for several purposes

H. Chen (CUNY-BC) umL March 31, 2022 33/44

Elements of Use Case Diagrams

Use case (with a name)

Actor (human or device that interacts with system)

T

Actor

H. Chen (CUNY-BC) UML March 31, 2022

34 /44

Rules for Use Case Diagrams

» Actors

> e.g. Employee, Manager, AppUser

> external to system (humans or devices)
P interact with system

P> may appear in many use cases

> Use Cases
P brief title of an interaction with the system

H. Chen (CUNY-BC) umL March 31, 2022 35/44

Use Case Diagram: A Simple Example

Transfer Medical Record

Medical Receptionist Patient Record System

H. Chen (CUNY-BC) umL March 31, 2022 3644

N -
Use Case Diagram: More Complex Example

system boundary NextGen POS _ — communication
N -~
~_ 4 -
% — alternate
notation for
Customer a computer
Payment system actor
Authorization o - 1
. Service /
- /
I Handle Returns ;
\ «actor» .
30107 Gashier Tax Calculator
«actor»
Accounting
System
Manager
«actor» Analyze Activity H;asc‘m;;m
Sales Activity] st
System
Manage Security) o _
/ - o~ ~

— | N
System Manage Users N
Administrator use case

H. Chen (CUNY-BC) umL March 31, 2022 37/44

~ Some Advice for UML Modeling |
Outline

@ Some Advice for UML Modeling

H. Chen (CUNY-BC) umL March 31, 2022 38/44

Why are use case diagrams important?

P> Requirements elicitation and organization — e.g. to help show how
different user stories are related

» Planning — e.g. to prioritize users or scenarios
P> Testing — e.g. help in constructing acceptance tests with good
coverage

H. Chen (CUNY-BC) umL March 31, 2022 39/44

_ someAdvice for UML Modcling
Key ideas in software modeling with UML

> Names are important — give good names to classes in class diagrams,
use cases, etc.

» Provide only essential details — avoid over-modeling

> Keep the model up to date — easy for the model to lose it's usefulness
if it's outdated

H. Chen (CUNY-BC) umL March 31, 2022 40/44

R
Tool Support

Many specialized tools exists
» Some integrated in IDEs

» Extensions for Eclipse or other IDEs (e.g. Sparx)
» Visual Studio has native support for class and sequence diagrams

» Standalone (e.g. MS Visio)
» On the cloud (Draw.io etc.)
A lot depends of whether you want OCL or MDA/MDD capabilities

H. Chen (CUNY-BC) umL March 31, 2022 41/44

Summary and Questions

Object-Oriented Design using UML
» Overview of UML
» Diagrams

> UML Class diagrams
> UML Use Case diagrams

H. Chen (CUNY-BC) umL March 31, 2022 42/44

. References |
Outline

© References

H. Chen (CUNY-BC) umL March 31, 2022 43/44

“Engineering Software as a Service” by Armando Fox and David Patterson
(2nd Edition)

“Essentials of Software Engineering” by Frank Tsui, Orlando Karam, and
Barbara Bernal(4th Edition)

H. Chen (CUNY-BC) umL March 31, 2022 44 /44

	From Requirements to Design
	Software Modeling
	Overview of UML
	UML Diagrams
	UML Object-Constraint Language (OCL)
	More about UML Diagrams
	Class Diagrams
	Use Case Diagrams

