
Applications Programming in Smalltalk-80
(TM):

How to use Model-View-Controller (MVC)
by

Steve Burbeck, Ph.D.

Author's note: This paper originally described the MVC framework as it existed in Smalltalk-80 v2.0. It
was updated in 1992 to take into account the changes made for Smalltalk-80 v2.5. ParcPlace made
extensive changes to the mechanisms for versions 4.x that are not reflected in this paper.

Copyright (c) 1987, 1992 by S. Burbeck
permission to copy for educational or non-commercial purposes is hereby granted

(TM)Smalltalk-80 is a trademark of ParcPlace Systems, Inc.

Introduction
One of the contributions of Xerox PARC to the art of programming is the multiwindowed highly
interactive Smalltalk-80 interface. This type of interface has since been borrowed by the developers of
the Apple Lisa and Macintosh and, in turn, by the Macintosh's many imitators. In such an interface,
input is primarily by mouse and output is a mix of graphic and textual components as appropriate. The
central concept behind the Smalltalk-80 user interface is the Model-View-Controller (MVC) paradigm.
It is elegant and simple, but quite unlike the approach of traditional application programs. Because of its
novelty, it requires some explanation -- explanation which is not readily available in published
Smalltalk-80 references.

If you run the graphics example in class Pen, you might well wonder why this "application" draws
directly on the screen rather than in a window like the browsers, workspaces, or transcripts with which
you are familiar. Certainly you would wish your own applications to share space on the display with the
easy aplomb of a workspace rather than simply overwrite the screen. Just what is the difference? Most
simply put, ill behaved applications do not conform to the MVC paradigm, whereas the familiar well
behaved applications do.

This paper is intended to provide the information essential for new Smalltalk-80 programmers to begin
using MVC techniques in their own programs. Here we will introduce the mechanisms of MVC. Once
you have digested this introduction you can strike out on your own. You will need to flesh out the
information given here by looking at the way familiar kinds of views and controllers -- such as
workspaces, browsers and file lists -- are set up. Browse early and often. Remember, this is Smalltalk-
80. You are encouraged to copy. Start your own window by copying one that is similar to the one you
want to create. Then modify it. Don't be shy. Feel free to stand on the shoulders of the many
programmers who htridave contributed to the Smalltalk-80 V2.5 image. In a very real way, it is their gift
to you.

Basic Concepts

Page 1 of 11How to use Model-View-Controller (MVC)

2012-09-09http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

In the MVC paradigm the user input, the modeling of the external world, and the visual feedback to the
user are explicitly separated and handled by three types of object, each specialized for its task. The view
manages the graphical and/or textual output to the portion of the bitmapped display that is allocated to
its application. The controller interprets the mouse and keyboard inputs from the user, commanding the
model and/or the view to change as appropriate. Finally, the model manages the behavior and data of
the application domain, responds to requests for information about its state (usually from the view), and
responds to instructions to change state (usually from the controller). The formal separation of these
three tasks is an important notion that is particularly suited to Smalltalk-80 where the basic behavior can
be embodied in abstract objects: View, Controller, Model and Object. The MVC behavior is then
inherited, added to, and modified as necessary to provide a flexible and powerful system.

To use the MVC paradigm effectively you must understand the division of labor within the MVC triad.
You also must understand how the three parts of the triad communicate with each other and with other
active views and controllers; the sharing of a single mouse, keybord and display screen among several
applications demands communication and cooperation. To make the best use of the MVC paradigm you
need also to learn about the available subclasses of View and Controller which provide ready made
starting points for your applications.

In Smalltalk-80, input and output are largely stylized. Views must manage screen real estate and display
text or graphic forms within that real estate. Controllers must cooperate to ensure that the proper
controller is interpreting keyboard and mouse input (usually according to which view contains the
cursor). Because the input and output behavior of most applications is stylized, much of it is inherited
from the generic classes -- View and Controller. These two classes, together with their subclasses,
provide such a rich variety of behavior that your applications will usually require little added protocol to
accomplish their command input and interactive output behavior. In contrast, the model cannot be
stylized. Constraints on the type of objects allowed to function as models would limit the useful range of
applications possible within the MVC paradigm. Necessarily, any object can be a model. A float number
could be the model for an airspeed view which might be a subview of a more complex flight simulator
instrument panel view. A String makes a perfectly usable model for an editor application (although a
slightly more complex object called a StringHolder is usually used for such purposes). Because any
object can play the role of model, the basic behavior required for models to participate in the MVC
paradigm is inherited from class Object which is the class that is a superclass of all possible models.

Communication Within The MVC Triad
The model, the view and the controller involved in the MVC triad must communicate with each other if
an application is to manage a coherent interaction with the user. Communication between a view and its
associated controller is straightforward because View and Controller are specifically designed to work
together. Models, on the other hand, communicate in a more subtle manner.

The Passive Model

In the simplest case, it is not necessary for a model to make any provision whatever for participation in
an MVC triad. A simple WYSIWYG text editor is a good example. The central property of such an
editor is that you should always see the text as it would appear on paper. So the view clearly must be
informed of each change to the text so that it can update its display. Yet the model (which we will
assume is an instance of String) need not take responsibility for communicating the changes to the view
because these changes occur only by requests from the user. The controller can assume responsibility for
notifying the view of any changes because it interprets the user's requests. It could simply notify the
view that something has changed -- the view could then request the current state of the string from its

Page 2 of 11How to use Model-View-Controller (MVC)

2012-09-09http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

model -- or the controller could specify to the view what has changed. In either case, the string model is
a completely passive holder of the string data manipulated by the view and the controller. It adds,
removes, or replaces substrings upon demand from the controller and regurgitates appropriate substrings
upon request from the view. The model is totally "unaware" of the existence of either the view or the
controller and of its participation in an MVC triad. That isolation is not an artifact of the simplicity of
the model, but of the fact that the model changes only at the behest of one of the other members of the
triad.

The Model's Link to the Triad

But all models cannot be so passive. Suppose that the data object -- the string in the above example --
changes as a result of messages from objects other than its view or controller. For instance, substrings
could be appended to the end of the string as is the case with the SystemTranscript. In that case the
object which depends upon the model's state -- its view -- must be notified that the model has changed.
Because only the model can track all changes to its state, the model must have some communication link
to the view. To fill this need, a global mechanism in Object is provided to keep track of dependencies
such as those between a model and its view. This mechanism uses an IdentityDictionary called
DependentFields (a class variable of Object) which simply records all existing dependencies. The keys
in this dictionary are all the objects that have registered dependencies; the value associated with each
key is a list of the objects which depend upon the key. In addition to this general mechanism, the class
Model provides a more efficient mechanism for managing dependents. When you create new classes that
are intended to function as active models in an MVC triad, you should make them subclasses of Model.
Models in this hierarchy retain their dependents in an instance variable (dependents) which holds either
nil, a single dependent object, or an instance of DependentsCollection. Views rely on these dependence
mechanisms to notify them of changes in the model. When a new view is given its model, it registers
itself as a dependent of that model. When the view is released, it removes itself as a dependent.

The methods that provide the indirect dependents communication link are in the "updating" protocol of
class Object. Open a browser and examine these methods. The message "changed" initiates an
announcement to all dependents of an object that a change has occurred in that object. The receiver of
the changed message sends the message update: self to each of it's dependents. Thus a model may notify
any dependent views that it has changed by simply sending the message self changed. The view (and
any other objects that are registered as dependents of the model) receives the message update: with the
model object as the argument. [Note: There is also a changed:with: message that allows you to pass a
parameter to the dependent.] The default method for the update: message, which is inherited from
Object, is to do nothing. But most views have protocol to redisplay themselves upon receipt of an
update: message. This changed/update mechanism was chosen as the communication channel through
which views can be notified of changes within their model because it places the fewest constraints upon
the structure of models.

To get an idea of how this changed/update: mechanism is used in MVC, open a browser on senders of
the changed message (Smalltalk browseAllCallsOn: #changed) and another on implementers of the
update: message (Smalltalk browseAllImplementorsOf: #update). Note that nearly all the implementors
of update: are varieties of View, and that their behavior is to update the display. Your views will do
something similar. The senders of changed and changed: are in methods where some property of the
object is changed which is important to its view. Again, your use of the changed message will be much
like these.

An object can act as a model for more than one MVC triad at a time. Consider an architectural model of
a building. Let us ignore the structure of the model itself. The important point is that there could be a
view of the floor plan, another external perspective view, and perhaps another view of external heat loss

Page 3 of 11How to use Model-View-Controller (MVC)

2012-09-09http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

(for estimating energy efficiency). Each view would have its cooperating controller. When the model is
changed, all dependent views can be notified. If only a subset of these views should respond to a given
change, the model can pass an argument which indicates to the dependents what sort of change has
occurred so that only those interested need respond. This is done with the changed: message. Each
receiver of this message can check the value of the argument to determine the appropriate response.

The View - Controller Link

Unlike the model, which may be loosely connected to multiple MVC triads, Each view is associated
with a unique controller and vice versa. Instance variables in each maintain this tight coupling. A view's
instance variable controller points at its controller, and a controller's instance variable view points at its
associated view. And, because both must communicate with their model, each has an instance variable
model which points to the model object. So, although the model is limited to sending self changed:, both
the view and the controller can send messages directly to each other and to their model.

The View takes responsibility for establishing this intercommunication within a given MVC triad. When
the View receives the message model:controller:, it registers itself as a dependent of the model, sets its
controller instance variable to point to the controller, and sends the message view: self to the controller
so that the controller can set its view instance variable. The View also takes responsibility for undoing
these connections. View release causes it to remove itself as a dependent of the model, send the message
release to the controller, and then send release to any subViews.

Views

The View/SubView Hierarchy

Views are designed to be nested. Most windows in fact involve at least two views, one nested inside the
other. The outermost view, known as the topView is an instance of StandardSystemView or one of its
subClasses. The StandardSystemView manages the familiar label tab of its window. Its associated
controller, which is an instance of StandardSystemController, manages the familiar moving, framing,
collapsing, and closing operations available for top level windows. Inside a topView are one or more
subViews and their associated controllers which manage the control options available in those views.
The familiar workspace for example has a StandardSystemView as a topView, and a StringHolderView
as its single subView. A subView may, in turn, have additional subViews although this is not required in
most applications. The subView/superView relationships are recorded in instance variables inherited
from View. Each view has an instance variable, superView, which points to the view that contains it and
another, subViews, which is an OrderedCollection of its subViews. Thus each window's topView is the
top of a hierarchy of views traceable through the superView/subViews instance variables. Note however
that some classes of view (e.g., BinaryChoiceView, and FillInTheBlankView) do not have label tabs, and
are not resizable or moveable. These classes do not use the StandardSystemView for a topView; instead
they use a plain View for a topView.

Let's look at an example which builds and launches an MVC triad. This example is a simplified version
of the code which opens a methodListBrowser -- the browser you see when you choose the
implementors or senders menu item in the method list subView of a system browser. The upper
subView of this browser displays a list of methods. When one of these methods is selected, its code
appears in the lower subView. Here is the code with lines numbered for easy reference.

openListBrowserOn: aCollection label: labelString initialSelection: sel
"Create and schedule a Method List browser for the methods in aCollection."
| topView aBrowser |

Page 4 of 11How to use Model-View-Controller (MVC)

2012-09-09http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

1. aBrowser := MethodListBrowser new on: aCollection.
2. topView := BrowserView new.
3. topView model: aBrowser; controller: StandardSystemController new;
4. label: labelString asString; minimumSize: 300@100.
5. topView addSubView:
6. (SelectionInListView on: aBrowser printItems: false oneItem: false
7. aspect: #methodName change: #methodName: list: #methodList
8. menu: #methodMenu initialSelection: #methodName)
9. in: (0@0 extent: 1.0@0.25) borderWidth: 1.
10. topView addSubView:
11. (CodeView on: aBrowser aspect: #text change: #acceptText:from:
12. menu: #textMenu initialSelection: sel)
13. in: (0@0.25 extent: 1@0.75) borderWidth: 1.
14. topView controller open

Now let's look at this code line by line. After creating the model [1], we create the topView [2]. Usually
this will be a StandardSystemView, but here we use a BrowserView, which is a subClass of
StandardSystemView. Line [3] specifies the model and controller. [Note: If the controller is not
explicitly provided, the defaultController method of the view will provide the controller when the view's
controller is first requested. Many applications specify the controller indirectly in this default method
rather than explicitly providing the controller when the view is opened.] The next line provides the
topView's label and minimum size [4]. Lines [5-9] install the upper subView, which is a
SelectionInListView. The lower CodeView is installed by lines [10-13]. Both of these types of view are
known as "pluggable views." These are discussed in more detail in a later section. Look closely at lines
[9] and [13] which indicate the placement of the subViews within the rectangle occupied by the
topView. There are a variety of ways to indicate to a view how it should place its subviews such as
addSubView:below: and insertSubView:above:. They will be found in the subView inserting protocol of
View. Here the placements are given relative to a canonical 1.0@1.0 rectangle. Your code need not
depend upon the final size and shape of the topView window. The upper view is placed at the upper left
corner (i.e., at 0@0) and allowed to occupy the full width but only the top 25% of the height of the
topView (i.e. extent: 1@0.25). The lower subView is placed at 0@0.25 and allowed to occupy the
remainder of the window (1@0.75). Each is given a borderWidth of 1 pixel. Finally, the controller is
opened [14] which causes the window to initiate the framing process -- the cursor becomes the upper left
corner cursor so that the user can frame the window. Your own MVC applications will usually be
opened similarly.

Displaying Views

Your view may need its own display protocol. This protocol will be used both for the initial display of
your view and for redisplay when the model signals a change (and possibly for redisplay instigated by
the controller as well). Specifically, the update: method in View sends self display. View display in turn
sends self displayBorder. self displayView. self displaySubviews. If your view requires any special
display behavior other than what is inherited, it belongs in one of these three methods. You can browse
implementors of displayView for examples of different sorts of display techniques. If you do, you will
note that several display methods make use of display transforms.

Display transforms are instances of WindowingTransformation. They handle scaling and translating in
order to connect windows and viewports. A window is the input to the transformation. It is a rectangle in
an abstract display space with whatever arbitrary coordinate system you find most appropriate for your
application. A viewport can be thought of as a specific rectangular region of the display screen to which
the abstract window should be mapped. The class WindowingTransformation computes and applies
scale and translation factors on displayable objects such as points and rectangles so that aWindow, when
transformed, corresponds to aViewport. However the transformation simply scales and translates one set
of coordinates to another hence there is no necessary connection to the display screen; the
transformation could be used for other purposes.

Page 5 of 11How to use Model-View-Controller (MVC)

2012-09-09http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

WindowingTransformations can be composed, and their inverses can be invoked. Views use
transformations to manage subview placement. You too can use them if you need to draw directly in a
view. View displayTransform: anObject applies the display transformation of the receiver to anObject
and answers the resulting scaled, translated object. It is usually applied to Rectangles, Points, and other
objects with coordinates defined in the View's local coordinate system to obtain a scaled and translated
object in display screen coordinates. The View displayTransformation returns a
WindowingTransformation that is the result of composing all local transformations in the receiver's
superView chain with the receiver's own local transformation. View inverseDisplayTransformation:
aPoint is used by controllers redButtonActivity to convert aPoint (e.g., Sensor cursorPoint) from screen
coordinates to view's window coordinates.

Notes on Existing Views

Your first application views will begin with existing views, an annotated list of which appears at the end
of this section. Some of these, such as browsers inspectors and debuggers are complete applications
which you can use as examples. Others are general purpose views which you will use intact as subviews
in your applications. Some you will no doubt want to refine by creating subclasses with more
specialized behavior. Much can be learned about making use of a given view by simply browsing the
view creation methods that make use of the view. For example, executing Smalltalk browseAllCallsOn:
(Smalltalk associationAt: #SwitchView) will present you with a method browser on all methods which
send messages to class SwitchView. Among these will be instance creation methods of other views
which use the given view as a subview. You can use these as examples of how to do so yourself.

Four of the general purpose existing views -- BooleanView, SelectionInListView, TextView and
CodeView -- are especially flexible. These are called "pluggable views." Their extra flexibility is
designed to reduce the need for many subclasses which differ only in the method selectors used to do
common tasks such as obtain data from the model or present a different yellowButtonMenu. Pluggable
views and their associated controllers perform these tasks by invoking "adaptor" selectors passed to
them at the time of instance creation. The SelectionInListView and CodeView used as subviews in the
openListBrowserOn: method shown in an earlier section are examples. Note that the arguments passed
to the creation methods of these views are selector names. The class comment of each pluggable view
defines the selectors to be passed to that view.

The Existing View Hierarchy

View - used as nonstandard topView for BinaryChoiceView and FillInTneBlankView
BinaryChoiceView - the thumbs up/down prompter
SwitchView - used in BitEditor and FormEditor as tool buttons

BooleanView - [pluggable] used for browser instance/class switch
DisplayTextView - used for message in the upper subview of a yes/no prompter
TextView - [pluggable] not used in vanilla V2.5 image

CodeView - [pluggable] used for browser subview which shows code
OnlyWhenSelectedCodeView - used by FileList lower subview

StringHolderView - used by workspaces
FillInTheBlankView - the familiar question prompter with a text answer
ProjectView - description view of a project
TextCollectorView - used by the Transcript

FormMenuView - used by BitEditor and FormEditor for buttons
FormView - used by BitEditor and the background screen gray InfiniteForm

FormHolderView - used by BitEditor and FormEditor for edited form
ListView - not used in vanilla V2.5 image

ChangeListView - a complete application
SelectionInListView - [pluggable] used for browser list subviews

StandardSystemView - provides topView functions
BrowserView - complete applications
InspectorView - complete application
NotifierView - error notifier, e.g., "Object does not understand"

Page 6 of 11How to use Model-View-Controller (MVC)

2012-09-09http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

Controllers
Smalltalk-80 presents the appearance that control resides in the mouse. As one moves and clicks the
mouse, the objects on the Smalltalk-80 screen perform much as an orchestra obeying its conductor. But
there is, in fact, no single autocratic power. A single thread of control is maintained by the cooperation
of the controllers attached to the various active views. Only one controller can actually have control at
any one time. So the trick is to make sure it is the proper one!

Communication Between Controllers

The primary organizing principle which makes this trick possible is that the active controllers for each
project form a hierarchical tree. At the root of this tree is the global variable ScheduledControllers,
which is a ControlManager attached to the active project. Branching from ScheduledControllers are the
topLevel controllers of each active window, plus an additional controller which manages the main
system yellowButtonMenu available on the grey screen background. Since each view is associated with a
unique controller, the view/subView tree induces a parallel controller tree within each topView. Further
branches from each topLevel controller follow this induced tree. Control passes from controller to
controller along the branches of this tree.

In simple terms the control flow requires the cooperative action of well bred controllers each of which
politely refuses control unless the cursor is in its view. And upon accepting control the well bred
controller attempts to defer to some subView's controller. The top level ControlManager asks each of
the controllers of the active topViews if it wants control. Only the one whose view contains the cursor
responds affirmatively and is given control. It, in turn, queries the controllers of its subViews. Again the
one that contains the cursor accepts control. This process finds the innermost nested view containing the
cursor and, in general, that view's controller retains control as long as the cursor remains in its view. (A
more detailed exposition of this control flow appears in Appendix A.) In this scheme, control
management involves the cooperation of all the active views and controllers in an intricately coordinated
minuet. Views are required to poll the controllers of their subViews. Controllers ask their views if they
contain the cursor. For that reason, it is unusual -- and risky -- to make modifications to your views or
controllers that involve nonstandard flow of control. Keep this firmly in mind when you first attempt to
install a new application controller because inadvertent disruption of the flow of control will crash the
system. The prudent programmer does a snapshot before making the attempt!

The vital role played by controllers implies that you cannot have a model-view pair without a controller.
If that were allowed, the flow of control would disappear in the gap left by the missing controller. Yet
there are some cases where you might want a set of subViews to be controlled collectively from the
containing controller, rather than from the individual controllers of the subViews. A special controller
for such subViews is provided by the class NoController which is specifically constructed to refuse
control.

The dance of the scroll bars among the browser subviews as the cursor moves between them is the most
visible consequence of the flow of control. As the cursor crosses boundaries of subViews within the
browser the scroll bar of the just exited subView disappears and the scroll bar for the entered subView
appears. This is accomplished by the controlInitialize and controlTerminate methods of those subViews
with controllers that inherit from ScrollController. When the cursor exits a given subView,
viewHasCursor returns false, and the controller executes its controlTerminate method which redisplays
the area previously covered by the scroll bar. Then the appropriate portion of the view/control tree is
traversed to find the controller which should now have control. If this view should have a scroll bar, the
controlInitialize method of the new controller saves the display area that is to be covered by the scroll

Page 7 of 11How to use Model-View-Controller (MVC)

2012-09-09http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

bar, then displays the scroll bar.

Entering and leaving the flow of control

Remember that this minuet of manners is a constantly ongoing one. How then does your newly created
MVC triad step into the process, and how does it retire when it is done?

First, the controller of your topViews is the one responsible for entering this process. It then passes
control to its subView controllers (which in reality do most of the work in a typical application). The top
level controllers must all be descendants of the class StandardSystemController which is designed to be
the controller of a top level view. The open message to a standardSystemController causes your new
MVC to become a top level branch of the control tree. The open message should be the last message in
the method which creates the new MVC because control does not return from this message. Code
appearing after the controller open message will not be executed. The controlTerminate method of a
StandardSystemController takes responsibility for unscheduling when the window is closed.

The MouseMenuController

Most applications use the mouse for pointing and menu options. Most controllers are therefore installed
somewhere in the class hierarchy under MouseMenuController which provides the basic instance
variables and methods. The relevant instance variables are {red, yellow, blue}ButtonMenu and {red,
yellow, blue}ButtonMessages in which you will install your menus and their associated messages. The
important methods are redButtonActivity, yellowButtonActivity, and blueButtonActivity. The Controller
controlLoop method, as its name implies, is the main control loop. Each time through this loop, it sends
self controlActivity. This method is reimplemented in MouseMenuController to check each of the mouse
buttons and, for instance, send self redButtonActivity if the red button is pressed and its view has the
cursor. The xxxButtonActivity checks for a non nil xxxButtonMenu, and if found, sends the message:
self menuMessageReceiver perform: (redButtonMessages at: index). Note: menuMessageReciever
normally returns self -- i.e., the controller -- so that menu message protocol normally resides in the
controller.

All top level controllers are instances of StandardSystemController or its subclasses. The
StandardSystemController is a subclass of MouseMenuController, which is specialized for being at the
top level of a window's controller hierarchy. It manages the familiar blueButtonMenu -- the frame, close,
collapse, . . . behavior of windows -- which apply to the topView. Your subview controllers should not
be subclasses of StandardSystemController. Rather, they should descend separately from
MouseMenuController. Yet the blueButton menu functions should still be handled by the topLevel
controller. To ensure this your controller can reroute a blueButton press to the top level by the following
blueButtonActivity method:

blueButtonActivity
view topView controller blueButtonActivity.

This is most transparent in that a person browsing your controller code can immediately see that the
blueButton is being handled by the topView controller. A more subtle approach is for the subView
controller to refuse control if the blueButton is down. This is done in your isControlActive method:

isControlActive
^super isControlActive & sensor blueButtonPressed not.

Page 8 of 11How to use Model-View-Controller (MVC)

2012-09-09http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

In the typical case, your controller will have its own yellowButtonMenu, and perhaps use the red button
for some sort of pointing or item selection function. You will usually make your menus something like
the following:

PopUpMenu labels:
'foo baz
over there
file out
new gadget'

lines: #(1 3).

This provides a menu with the given options, and with lines after the first and third items. You then
install a parallel list of messages, e.g., #(fooBaz overThere fileOut newGadget). The menu and the
messages list must end up in the yellowButtonMenu and yellowButtonMessages instance variables. This
can be done on the fly if desired, but the more typical approach is to build the menu and messages in a
class initialize method and install them in the instance initialize method. For an example, look at the
ChangeListController class initialize method. Finally, you need to install the methods to implement the
menu messages. They conventionally reside in the menu messages protocol of your controller. If you
wish to use redButton presses for control activity other than menu selection, redefine the
redButtonActivity of your controller to implement the desired activity. In your new redButtonActivity
method you can check for other conditions such as Sensor leftShiftDown to provide more flexibility.
You can see examples of nonmenu redButtonActivity methods in the FormEditor, ListController, and
SelectionInListController.

Menus, despite their use of the display screen, are not handled by MVC triads. They manage their own
screen display and control, including the saving and replacing of the screen contents in the region
covered by the menu. In addition to the PopUpMenu in the above example, you should examine
ActionMenu which is especially useful for pluggable views.

ParagraphEditor

All controllers that accept keyboard text input are under the ParagraphEditor in the Controller
hierarchy. ParagraphEditor predates the full development of the MVC paradigm. It handles both text
input and text display functions, hence it is in some ways a cross between a view and a controller. The
views which use it or its subcasses for a controller reverse the usual roles for display; they implement
the display of text by sending controller display. The multiplicity of roles played by the
ParagraphEditor make it a complex object. It manages the special keys (for example, the Ctrl T
mapping to ifTrue:). It also manages the selection of text, the selection of font and point size, and the
formatting of the text (that is, proportional character spacing and line breaks tailored to the width of the
view). Because it is at the top of the hierarchy of text handling controllers, you have easy access to all of
it's power. But the complexity of the text processing classes carries a substantial overhead penalty. This
overhead is most visible in the annoying delay between the typing of a character and its display on the
screen. The three classes that do most of the text prossesing work are ParagraphEditor, Paragraph, and
CharacterScanner. Some Smalltalk-80 programmers have created parallels to each of these classes that
dispense with most of the time consuming features. They have achieved text processing speeds for
specialized applications that are several times faster than that provided by the standard classes.

ScreenController

The gray screen background and the yellowButtonMenu available on that background are not special
exceptions to the MVC paradigm; they too are managed by an MVC triad. The model is an InfiniteForm
(colored gray), the view is an instance of FormView, and the controller is the single instance of class

Page 9 of 11How to use Model-View-Controller (MVC)

2012-09-09http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

ScreenController. To add an item to the main screen menu (perhaps a printScreen option), you edit the
ScreenController class method initialize (in the class initialization protocol) and add your method in the
menu messages protocol. Don't forget to execute the comment at the bottom of the class initialize
method to install your new menu. You might also wish to look at the other methods in the menu
messages protocol to see how browsers, file lists, or workspaces are opened.

The MVC Inspector
Because the MVC triad is so important, Smalltalk-80 provides a specialized inspector -- an MVC
inspector -- to examine all three objects at once. You will likely make considerable use of this inspector
when you begin to build your own applications both as a tool for seeing how other MVC triads work and
as an invaluable debugging aid to see why your own doesn't work. You open an MVC inspector by
sending the message inspect to any View. The easiest way to make use of MVC inspectors is to fileIn
the BLUEINSP.ST goodie provided with the Smalltalk-AT distribution. [Note: not all distributions of
Smalltalk-80 include this goodie.] It installs a blue button menu item "inspect" for all topViews. This
menu item opens an MVC inspector on the view, its model and its controller. Once you understand a bit
about the MVC triad, the MVC inspector will let you poke about in the innards of any window which
catches your fancy. In a complex view such as a browser, with many subviews, you can follow the chain
of subViews down, opening further MVC inspectors on selected subViews.

As an exercise, open an MVC inspector on the System Transcript window (first be sure a
SystemTranscript is open on your screen). Begin by opening an inspector on the instances of
DependentsCollection by executing DependentsCollection allInstances inspect. Locate the item with
two dependents: "a StandardSystemView" and "aTextCollectorView." Select the TextCollectorView and
choose inspect. Now you will have an MVC inspector on the TextCollector, its view, and its controller.
For instance, in the top model subview, select the contents variable: in the right window, you will see
the same text as you see in your Transcript window. In the bottom controller section look at and inspect
the button menus and messages. They will be the familiar ones of the transcript. In the middle view
section, select superView: it will be a StandardSystemView. Select it and choose inspect. You will then
have another MVC inspector on the topView of the transcript window. These two MVC inspectors
together give access to the entire structure of the transcript application. Note, both MVC triads share the
same model -- the TextCollector .

[Note: In versions of Smalltalk-80 prior to the inclusion of the Model class, you will need to start
differently: begin by opening an inspector on the DependentsFields dictionary (the dictionary in which
all object dependencies are maintained) by executing (Object classPool at: #DependentsFields) inspect.
This gives you access to an inspector on the IdentityDictionary. Locate the item with the key
"aTextCollector," which is the model of a transcript. Select it and choose the inspect option in the
yellowButtonMenu. This opens an inspector on the OrderedCollection of objects registered as
dependents of the TextCollector. In this new inspector, one of the items will be a TextCollectorView.
Select the TextCollectorView and choose inspect.]

Appendix A:

Details on the flow of control

Above all of the controllers of topViews is ScheduledControllers -- the instance of ControlManager
attached to the current project. This controlManager determines which of the topView's controllers
should be active. It uses the method searchForActiveController, which in turn sends isControlWanted to

Page 10 of 11How to use Model-View-Controller (MVC)

2012-09-09http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

all scheduledControllers. When it finds the appropriate top level controller it sends that controller the
message startUp, which is inherited from class Controller. It sends the following three messages: self
controllInitialize, self controlLoop, self controlTerminate. The controllLoop method handles the flow of
control by:

[self is ControlActive] whileTrue: [Processor yield.
 self controlActivity]

The self controlActivity just says: self controlToNextLevel. Here the control flow is passed briefly to the
view by means of the code:

aView := view subViewWantingControl.
aView ~~ nil ifTrue: [aView controller startUp]

which just asks the view to determine which of its subviews wants control, and if one does, passing
control to that view's controller. The isControlWanted method simply returns the result of the message
self viewHasCursor which in turn simply says view containsPoint: sensor cursorPoint. Thus, at the
bottom of the flow of control process is the question of which view contains the cursor. The one
exception is NoController which reimplements isControlWanted to always return false.

Thanks to Charles Lloyd for HTMLizing this document.

If you spot an error, please contact Ian.

Page 11 of 11How to use Model-View-Controller (MVC)

2012-09-09http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

