CISC 3120
C19: User Datagram and

Multicast

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College



Outline

* Recap

* Network fundamentals
« IPv4, IPv6 addresses
« TCP and UDP

« Unicast, broadcast, and multicast

 User datagram and datagram socket
 Datagram unicast, broadcast, and multicast
* Datagram packet and streams



A Few IPv4 Address Types

Private Network

Loopback

Link-local Unicast
Documentation (TEST-NET-1)

Documentation (TEST-NET-2)

Documentation (TEST-NET-3)

Multicast
Global Unicast

1100 0000 1010 1000

1010 1100 0001
1010 0000
01111111
1111111010

1100 0000 0000 0000 0000 0010
1100 0110 0011 0011 0110 0100

1100 1011 0000 0000 0111 0001

1110

192.168.0.0/16
172.16.0.0/12
10.0.0.0/8
127.0.0.0/8
169.254.0.0/16
192.0.2.0/24
198.51.100.0/24
203.0.113.0/24
224.0.0.0/4

Everything else (with exceptions)



A Few IPv6 Address Types

Unspecified 00..0 (128 bits) ::/128
Loopback 00..1 (128 bits) ::1/128
Multicast 1111 1111 FFOO::/8
Link-local Unicast 1111 1110 10 FES0::/10
Private Network 1111 110 FC00::/7

Documentation 0010 0000 0000 0001 2001:0DB8::/32
0000 1101 1011 1000

Global Unicast Everything else (with exceptions)



Multiplexing and Demultiplexing

« Network layer functionality belongs to a host
« How do applications share the network?

 Transport layer: multiplexing and demultiplexing
host A host B
Appl App?2 Appl App?2

Transpert Layer Transpert Layer

Network Layer Network Layer

4/18/2018 CUNY | Brooklyn College



TCP and UDP

 Transport Control Protocol
 User Datagram protocol

« Communication protocol for processes (a
process represents a running program)

 Multiplexing and demultiplexing over the
network layer (the Internet protocol)



UDP

 User Datagram Protocol

« Implement solely multiplexing and
demultiplexing over the network layer (the

Internet protocol)
* Transmit independent datagram one at a time

« Communication is not reliable (called best
effort)

* No guarantee on the order of datagrams
* No guarantee on the delivery of datagrams



TCP and UDP Port Numbers

 For multiplexing and demultiplexing, how do we
differentiate multiple processes (running programs)
on a host?

» UDP port humbers

« 16 bit integer

 Use them to differentiate different processes on a host
* TCP port numbers

« 16 bit integer

 Use them to differentiate different processes on a host



List TCP/UDP Port Statistics

Use netstat , available on many operating systems (Windows, OS X,
Linux ...)

Windows

« Examples

« netstat -n -o -p TCP; netstat -f -o -p TCP; netstat -n -0 -p UDP; and netstat -f -0 -p
TCP

Linux

« Examples

* netstat -n-p -a -t; netstat -p -a -t; netstat -n -p -a -u; and netstat-p -a -u
OS X

« Examples

* netstat -n -a -p tcp; netstat -a -p tcp; netstat -n -a -p udp. and netstat -a -p udp;



Some Practical Considerations

« Is aport (TCP, UDP, or both) available to our own programs?
« 1-1023 are privileged
 Registered ports (with iana.org, sometimes called well-known or service ports)
See /etc/services on Mac OS X, or, Linux or Unix
See C:\Windows\system32\drivers\etc\services on Windows
« A process may be running and assigned (called bound o) one or more ports

A port can only be assigned to a single process

« Does the host-based or network-based firewall get in your way (at
home, at the college, or at the coffee shop ...)?

* A firewall is an application that filter out some IP packets/TCP segments/UDP
datagrams

« Commonly, an organization only allows traffics to a small number of registered
ports (e.g., 80 for HTTP, 443 for HTTPS, 53 for DNS)



Programming with TCP and UDP

« Java network applications typically use TCP or UDP to
communicate

 Typically no need to concern with innerworkings of TCP or UDP
« Use java.net package or other network related packages
« TCP communications
 The Socket, ServerSocket, URL, and URLConnection classes
« UDP communications

* The DatagramPacket, DatagramSocket, and MulticastSocket classes
* Need to understand the concept of Socket

* Most lower-level networking APIs are modeled after the Berkeley
Socket APT



Socket

* A data structure (or an object) representing a
two-way communication link between two
programs running on the network

« Two end points
* Local and remote end points
 Each is a combination of IP address and port number
 IP address: identify a host

 Port number: identify a process (running program) on the
host



Questions

* Recap of relevant concepts



Use Datagram

 Datagram
« Independent, self-contained message
« Best effort, no connection establishment is required

« Unreliable: there is no guarantee on arrival, arrival time, and order
of arrival

 Light weight (less resource)
« UDP in Java

« The DatagramPacket, DatagramSocket, and MulticastSocket classes
 Unicast, broadcast, and multicast

« Often use for broadcasting or multicasting



UDP Unicast: Example

Echo a receive message (UDP datagram): knock, knock. Who is there?
Essential classes: DatagramSocket, DatagramPacket

KnockKnocklst: receive first

* Create a DatagramSocket whose local end point is bound to an address and a
port of the host

* Receive a packet

 Prepare and send a reply packet

KnockKnock2nd: send first
* Create a DatagramSocket, let JVM/OS determine the local port number
* Prepare and send a packet, filled with destination address and port number

* Receive a packet



Datagram Multicasting and
Broadcasting

* One important use case of Datagram is to
realize multicasting or Broadcasting

* Multicasting: one-to-many
* Broadcasting: one-to-all (a special case of multicast)
* Question

* What kind of applications may multicast (or
broadcast) benefit?

* Why?



UDP Broadcast: Example

* Generate a list of random integers, and broadcast to any receivers
« Essential classes: DatagramSocket, DatagramPacket

* Broadcast Sender (one sender)

* Create a DatagramSocket
¢ Make sure SO_BROADCAST is enabled
Not all networks support broadcast

« Send packets to broadcast address at a remote port
* Broadcast receivers

* Receive packet at the designated port

Matching the port number of the remote end point given at the sender

« Use ByteArrayOutputStream, ByteArrayInputStream, DataInputStream,
DataOutputStream to process packets



UDP Multicast: Example

« Generate a list of random integers, and multicast to a group of receivers
 Essential classes: DatagramSocket, MulticastSocket, DatagramPacket
* Multicast sender (one sender)
* Create either a DatagramSocket or a MulticastSocket
« Send packet to the two addresses representing two multicast groups
« Multicast receivers (a group of receivers)
* Must create a MulticastSocket
« Join one of the two multicast groups indicated by their respective mutilcast address
* Receive packet
* Leave the group when done

« Use ByteArrayOutputStream, ByteArrayInputStream, DataInputStream,
DataOutputStream to process packets



IPv4 and IPv6

« Java made it transparent to use IPv4 or
IPvé.

 The code is essentially identical

* The difference is to use an IPv4 or an IPv6
address, respectively



Questions

« User Datagram Protocol (UDP)
« UDP sockets in Java

« Connection-oriented (TCP) and
connectionless (UDP)

» Unicast, broadcast, and multicast
* Use IPv4 or IPv6



Assignments

* Practice assignments
* Project 4



