CISC 3120
C18: Network Fundamentals

and Reliable Sockets

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Outline

* Networking fundamentals

* Network interfaces

* Reliable sockets

* Reliable sockets and streams

Network I/0O

« A source or a destination of an I/0O stream
can be on a computer network

* How do we identify a source or a destination
on the network?

Source or
R data || data || data | ... data
destination Program

4/16/2018 CUNY | Brooklyn College

Layered Architecture

 OSI model and TCP/IP

4/16/2018

oSl

Application

Presentation

Session

Transport

Network

Data link

Physical

TCP/IP
Application
T~ Not present
// in the model
Transport
Internet
Host-to-network

CUNY | Brooklyn College

The Internet Architecture
(TCP/IP)

* Layering is not strict, hourglass design,
representative implementation

AN SN ANy S
_ & & Application

TCP UDP TCP UDP

~. ~
R IP
o - } I'II. ---\----\-' T

Al oy < S Host-to-Network
NET, NET, NET

Internet protocol graph. Internet architecture.

4/16/2018 CUNY | Brooklyn College

Two Hosts and a Router

« Typical delegation of
responsibilities

Application and
Application Libraries
(e.g., JVM and Java
applications)

Operating
System

Network
Interface
Card/Adapter
(NIC)

One or more nodes
within the network

4/16/2018 CUNY | Brooklyn College

Network Protocol

» A distributed algorithm and associated data
structures for data communication over a
network

» Each layer may have many protocols

Host and Network Interface

* A host may have multiple network interface

A network interface typically implements
physical layer and link layer functionality (or

the host-to-network layer)

4/16/2018 CUNY | Brooklyn College

Network Layer

» Example protocol
« The Internet Protocol (IP)
« Communication protocol for hosts
* Transmit and receive IP packets

 To identify a host on the Internet, use an IP
address

IP Address

» Currently deployed Internet Protocols
« IP version 4 (IPv4)
« IP version 6 (IPv6)

* The very first field in an IP packet indicates the
version of IP protocol

* Globally unique except local networks & private
networks

« Hierarchical (network number + host number)

IPv4 Address

» 32 bit integer
* Divided into two parts

* Network number and host number (using prefix or
network mask)

 Human-readable form

» IPv4 numbers-and-dots notation, each humber
corresponds to a byte in the address

» Example: 146.245.201.50

* Facing exhaustion of address space, moving
to IPvé6

IPv4 Private Networks

* Private networks

* Not routab
« 24-bit bloc
« 20-bit bloc

e in a public network
k 10.0.0.0-10.255.255.255

kK 172.16.0.0-172.31.255.255

 16-bit block 192.168.0.0-192.168.255.255

IPv4 Link Local and Loopback
Address

 Link local address
* Not routable

* For configuration purpose

« 169.254.0.0/16 (16 bit block: 169.254.0.0 -
169.254.255.255)

* Loopback address

* Only stay within the host

« 127.0.0.0/8 (24 bit block: 127.0.0.0 -
127.255.255.255)

Broadcast, Multicast, and
Unicast

* The addresses are divided into broadcast,
multicast, and unicast address

* Broadcast address: all 1's in the host number for
the network

« TPv4 Multicast: 224.0.0.0/4 (224.0.0.0 -
239.255.255.255)

A Few IPv4 Address Types

Private Network

Loopback

Link-local Unicast
Documentation (TEST-NET-1)

Documentation (TEST-NET-2)

Documentation (TEST-NET-3)

Multicast
Global Unicast

1100 0000 1010 1000

1010 1100 0001
1010 0000
01111111
1111111010

1100 0000 0000 0000 0000 0010
1100 0110 0011 0011 0110 0100

1100 1011 0000 0000 0111 0001

1110

192.168.0.0/16
172.16.0.0/12
10.0.0.0/8
127.0.0.0/8
169.254.0.0/16
192.0.2.0/24
198.51.100.0/24
203.0.113.0/24
224.0.0.0/4

Everything else (with exceptions)

IPv6 Address

» 128 bits/16 bytes in length
 IPv6 Notation: a human friendly text representation

« X:X:X:X:X:X:X:X Where x is a 16-bit (or 2-byte)
hexadecimal number, e.g.,
e 477CD:1234:4422:AC02:0022:0022:1234:A456

« Contiguous Os can be compressed, e.qg.,
« 47CD:0000:0000:0000:0000:0000:A456:0124

e can be written as
e 477CD::A450:0124

A Few IPv6 Address Types

Unspecified 00..0 (128 bits) ::/128
Loopback 00..1 (128 bits) ::1/128
Multicast 1111 1111 FFOO::/8
Link-local Unicast 1111 1110 10 FES0::/10
Private Network 1111 110 FC00::/7

Documentation 0010 0000 0000 0001 2001:0DB8::/32
0000 1101 1011 1000

Global Unicast Everything else (with exceptions)

Host Name

* A host may be identified by its name
« Example: the Domain Name Service (DNS)
« Domain Name Service (DNS)

* A global name database, and an application on the Internet that does the
translation

* (host name/DNS resolution) Host hame - IP address

* (reverse host name/DNS resolution) IP address - host name
« Example

« www.brooklyn.cuny.edu

* www.google.com
« Communications are done using IP addresses

« DNS provides the translation

Look Up Host IP Address

While on a host, you can look up its IP addresses

Be aware that a host may have multiple IP addresses

 an IP address is assigned to a network interface on a host, and a
host can have multiple network interfaces

« a network interface can be assigned multiple IP addresses
Windows

« ipconfig
Mac OS X

- ifconfig

Linux
* ip address or ifconfig

Look Up IP addresses for Host
Names

* Use nslookup, available on many operating
systems (Windows, Mac OS X, Linux ...)

 Use dig on Linux

« Example

* nslookup www.google.com
* nslookup www.brooklyn.cuny.edu

» dig www.google.com

Work with Network Interface

* In Java, use java.net.NetworkInterface to
deal with network interfaces on a host

» Example application
« What do you observe?

« Link type, name, unicast address, broadcast
address, network number ...

Questions

* Network architecture and layered model
» Host, node, and network interface

« TP addresses
« IPv4 and IPvé
* Practical operations

* Look up hosts' IP addresses

« Examine network interfaces

Multiplexing and Demultiplexing

« Network layer functionality belongs to a host
« How do applications share the network?

 Transport layer: multiplexing and demultiplexing
host A host B
Appl App?2 Appl App?2

Transpert Layer Transpert Layer

Network Layer Network Layer

4/16/2018 CUNY | Brooklyn College 23

TCP and UDP

 Transport Control Protocol
 User Datagram protocol

« Communication protocol for processes (a
process represents a running program)

 Multiplexing and demultiplexing over the
network layer (the Internet protocol)

UDP

 User Datagram Protocol

« Implement solely multiplexing and
demultiplexing over the network layer (the

Internet protocol)
* Transmit independent datagram one at a time

« Communication is not reliable (called best
effort)

* No guarantee on the order of datagrams
* No guarantee on the delivery of datagrams

TCP

 Transmission Control Protocol

» Besides multiplexing and demultiplexing,
abstract a connection-oriented reliable byte
stream

e Create an abstraction data are transmitted or
received one byte at a time, reliably

* Maintain the order of the bytes

 Guarantee delivery of data, or an error is reported

* Must establish connection

TCP and UDP Port Numbers

 For multiplexing and demultiplexing, how do we
differentiate multiple processes (running programs)
on a host?

» UDP port humbers

« 16 bit integer

 Use them to differentiate different processes on a host
* TCP port numbers

« 16 bit integer

 Use them to differentiate different processes on a host

List TCP/UDP Port Statistics

Use netstat , available on many operating systems (Windows, OS X,
Linux ...)

Windows

« Examples

« netstat -n -o -p TCP; netstat -f -o -p TCP; netstat -n -0 -p UDP; and netstat -f -0 -p
TCP

Linux

« Examples

* netstat -n-p -a -t; netstat -p -a -t; netstat -n -p -a -u; and netstat-p -a -u
OS X

« Examples

* netstat -n -a -p tcp; netstat -a -p tcp; netstat -n -a -p udp. and netstat -a -p udp;

Some Practical Considerations

« Is aport (TCP, UDP, or both) available to our own programs?
« 1-1023 are privileged
 Registered ports (with iana.org, sometimes called well-known or service ports)
See /etc/services on Mac OS X, or, Linux or Unix
See C:\Windows\system32\drivers\etc\services on Windows
« A process may be running and assigned (called bound o) one or more ports

A port can only be assigned to a single process

« Does the host-based or network-based firewall get in your way (at
home, at the college, or at the coffee shop ...)?

* A firewall is an application that filter out some IP packets/TCP segments/UDP
datagrams

« Commonly, an organization only allows traffics to a small number of registered
ports (e.g., 80 for HTTP, 443 for HTTPS, 53 for DNS)

Questions?

 Multiplexing and demultiplexing over the
Internet

* TCP and UDP

» TCP port and UDP port

* Query network statistics on a host
« Some practical consideration

* What ports are available for us to use in our own
programs?

Programming with TCP and UDP

« Java network applications typically use TCP or UDP to
communicate

 Typically no need to concern with innerworkings of TCP or UDP
« Use java.net package or other network related packages
« TCP communications
 The Socket, ServerSocket, URL, and URLConnection classes
« UDP communications

* The DatagramPacket, DatagramSocket, and MulticastSocket classes
* Need to understand the concept of Socket

* Most lower-level networking APIs are modeled after the Berkeley
Socket APT

Socket

* A data structure (or an object) representing a
two-way communication link between two
programs running on the network

« Two end points
* Local and remote end points
 Each is a combination of IP address and port number
 IP address: identify a host

 Port number: identify a process (running program) on the
host

TCP Socket: Client and Server

 TCP requires to establish a connection

e Client and server
e Client

« The program that actively initiates the connection
establishment

« Server

« The program that passively waits for the client to
connect to it, and accepts the connection

« It is always that a client connects to the server, and
server accepts the connection request in this context

TCP Socket in Java

« Socket and ServerSocket classes

 Represent the connection between a client program and a
server program.

A connection has two end points, so a socket usually has two end
points (local and remote)

 Socket class
* Represent the connection at the client side of the connection

e ServerSocket class

* Present the connection at the server side of the connection

* Low-level communication directly using TCP

TCP Client-Server Application
using Sockets

* A server programs runs on a host and has a socket that is bound to a port number and an
IP address.

* The server just waits, listening to the socket for a client Yo make a connection request.

« The client attempts to connect to the server program by using the server's address and
port to which the server is listening to (service address and port).

To identify itself to the server, the client binds to a local port number (usually assigned by the
system, not done by the programmer) that it will use during this connection.

* When the server accepts the connection, the server does the following,

It creates a new socket bound to the same local port (local endpoint) and also has its remote
endpoint set to the address and port of the client.

It can continue to listen to the original socket for connection requests while tending to the needs
of the connected client using the newly created socket

* On the client side, the socket is ready if the connection is accepted at the server

« The client and server can now communicate by writing to or reading from their sockets.

I/0 Streams and TCP Socket in
Java

» A TCP socket represents a connection at
either the client or the server

« Socket can be source or destination of I/0
streams

« We can obtain an InputStream or an
OutputStream from a socket

* High-level streams can be created by wrapping
the InputStream or the OutputStream

Example: Download a File

* Use try-catch-finally to handle errors and
release resources

» Can you use try-with-resources instead?

* Regardless which one to use, make sure all
the resources are closed

« Communication: unicast (one-to-one)

Questions

» Concept of socket
* TCP socket in Java

» Concept of client and server
« TCP sockets and I/0 streams

« Communication: unicast

 Make sure all resources are released

Questions

* Networking fundamentals

* Network interfaces

» Sockets and network I/0

* Reliable socket and byte streams

Assignments

* Practice assignments
* Project 4

