
CISC 3120

C18: Network Fundamentals
and Reliable Sockets

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

4/16/2018 1CUNY | Brooklyn College

Outline

• Networking fundamentals

• Network interfaces

• Reliable sockets

• Reliable sockets and streams

4/16/2018 CUNY | Brooklyn College 2

Network I/O

• A source or a destination of an I/O stream
can be on a computer network

• How do we identify a source or a destination
on the network?

4/16/2018 CUNY | Brooklyn College 3

Source or
destination Programdata data data data……

Layered Architecture

• OSI model and TCP/IP

4/16/2018 CUNY | Brooklyn College 4

The Internet Architecture
(TCP/IP)

• Layering is not strict, hourglass design,
representative implementation

4/16/2018 CUNY | Brooklyn College 5

Host-to-Network

IP

TCP UDP

Application

Two Hosts and a Router

• Typical delegation of
responsibilities

4/16/2018 CUNY | Brooklyn College 6

Network
Interface
Card/Adapter
(NIC)

Operating
System

Application and
Application Libraries
(e.g., JVM and Java
applications)

Network Protocol

• A distributed algorithm and associated data
structures for data communication over a
network

• Each layer may have many protocols

4/16/2018 CUNY | Brooklyn College 7

Host and Network Interface

• A host may have multiple network interface

• A network interface typically implements
physical layer and link layer functionality (or
the host-to-network layer)

4/16/2018 CUNY | Brooklyn College 8

Network Layer

• Example protocol

• The Internet Protocol (IP)

• Communication protocol for hosts

• Transmit and receive IP packets

• To identify a host on the Internet, use an IP
address

4/16/2018 CUNY | Brooklyn College 9

IP Address

• Currently deployed Internet Protocols

• IP version 4 (IPv4)

• IP version 6 (IPv6)

• The very first field in an IP packet indicates the
version of IP protocol

• Globally unique except local networks & private
networks

• Hierarchical (network number + host number)

4/16/2018 CUNY | Brooklyn College 10

IPv4 Address

• 32 bit integer
• Divided into two parts

• Network number and host number (using prefix or
network mask)

• Human-readable form
• IPv4 numbers-and-dots notation, each number

corresponds to a byte in the address

• Example: 146.245.201.50

• Facing exhaustion of address space, moving
to IPv6

4/16/2018 CUNY | Brooklyn College 11

IPv4 Private Networks

• Private networks

• Not routable in a public network

• 24-bit block 10.0.0.0–10.255.255.255

• 20-bit block 172.16.0.0–172.31.255.255

• 16-bit block 192.168.0.0–192.168.255.255

4/16/2018 CUNY | Brooklyn College 12

IPv4 Link Local and Loopback
Address

• Link local address

• Not routable

• For configuration purpose

• 169.254.0.0/16 (16 bit block: 169.254.0.0 –
169.254.255.255)

• Loopback address

• Only stay within the host

• 127.0.0.0/8 (24 bit block: 127.0.0.0 –
127.255.255.255)

4/16/2018 CUNY | Brooklyn College 13

Broadcast, Multicast, and
Unicast

• The addresses are divided into broadcast,
multicast, and unicast address

• Broadcast address: all 1’s in the host number for
the network

• IPv4 Multicast: 224.0.0.0/4 (224.0.0.0 –
239.255.255.255)

4/16/2018 CUNY | Brooklyn College 14

A Few IPv4 Address Types

4/16/2018 CUNY | Brooklyn College 15

Address Type Binary Prefix IPv4 CIDR Notation

Private Network 1100 0000 1010 1000 192.168.0.0/16

1010 1100 0001 172.16.0.0/12

1010 0000 10.0.0.0/8

Loopback 0111 1111 127.0.0.0/8

Link-local Unicast 1111 1110 10 169.254.0.0/16

Documentation (TEST-NET-1) 1100 0000 0000 0000 0000 0010 192.0.2.0/24

Documentation (TEST-NET-2) 1100 0110 0011 0011 0110 0100 198.51.100.0/24

Documentation (TEST-NET-3) 1100 1011 0000 0000 0111 0001 203.0.113.0/24

Multicast 1110 224.0.0.0/4

Global Unicast Everything else (with exceptions)

IPv6 Address

• 128 bits/16 bytes in length

• IPv6 Notation: a human friendly text representation

• x:x:x:x:x:x:x:x where x is a 16-bit (or 2-byte)
hexadecimal number, e.g.,

• 47CD:1234:4422:ACO2:0022:0022:1234:A456

• Contiguous 0s can be compressed, e.g.,

• 47CD:0000:0000:0000:0000:0000:A456:0124

• can be written as

• 47CD::A456:0124

4/16/2018 CUNY | Brooklyn College 16

A Few IPv6 Address Types

4/16/2018 CUNY | Brooklyn College 17

Address Type Binary Prefix IPv6 Notation

Unspecified 00…0 (128 bits) ::/128

Loopback 00…1 (128 bits) ::1/128

Multicast 1111 1111 FF00::/8

Link-local Unicast 1111 1110 10 FE80::/10

Private Network 1111 110 FC00::/7

Documentation 0010 0000 0000 0001
0000 1101 1011 1000

2001:0DB8::/32

Global Unicast Everything else (with exceptions)

Host Name

• A host may be identified by its name

• Example: the Domain Name Service (DNS)

• Domain Name Service (DNS)

• A global name database, and an application on the Internet that does the
translation

• (host name/DNS resolution) Host name IP address

• (reverse host name/DNS resolution) IP address host name

• Example

• www.brooklyn.cuny.edu

• www.google.com

• Communications are done using IP addresses

• DNS provides the translation

4/16/2018 CUNY | Brooklyn College 18

Look Up Host IP Address

• While on a host, you can look up its IP addresses

• Be aware that a host may have multiple IP addresses

• an IP address is assigned to a network interface on a host, and a
host can have multiple network interfaces

• a network interface can be assigned multiple IP addresses

• Windows

• ipconfig

• Mac OS X

• ifconfig

• Linux

• ip address or ifconfig

4/16/2018 CUNY | Brooklyn College 19

Look Up IP addresses for Host
Names

• Use nslookup, available on many operating
systems (Windows, Mac OS X, Linux …)

• Use dig on Linux

• Example

• nslookup www.google.com

• nslookup www.brooklyn.cuny.edu

• dig www.google.com

4/16/2018 CUNY | Brooklyn College 20

Work with Network Interface

• In Java, use java.net.NetworkInterface to
deal with network interfaces on a host

• Example application

• What do you observe?

• Link type, name, unicast address, broadcast
address, network number …

4/16/2018 CUNY | Brooklyn College 21

Questions

• Network architecture and layered model

• Host, node, and network interface

• IP addresses

• IPv4 and IPv6

• Practical operations

• Look up hosts’ IP addresses

• Examine network interfaces

4/16/2018 CUNY | Brooklyn College 22

Multiplexing and Demultiplexing

• Network layer functionality belongs to a host

• How do applications share the network?

• Transport layer: multiplexing and demultiplexing

host A host B

4/16/2018 CUNY | Brooklyn College 23

Transport Layer

Network Layer
(IP)

… …

App 1 App 2

Transport Layer

Network Layer
(IP)

… …

App 1 App 2

TCP and UDP

• Transport Control Protocol

• User Datagram protocol

• Communication protocol for processes (a
process represents a running program)

• Multiplexing and demultiplexing over the
network layer (the Internet protocol)

4/16/2018 CUNY | Brooklyn College 24

UDP

• User Datagram Protocol

• Implement solely multiplexing and
demultiplexing over the network layer (the
Internet protocol)

• Transmit independent datagram one at a time

• Communication is not reliable (called best
effort)

• No guarantee on the order of datagrams

• No guarantee on the delivery of datagrams

4/16/2018 CUNY | Brooklyn College 25

TCP

• Transmission Control Protocol

• Besides multiplexing and demultiplexing,
abstract a connection-oriented reliable byte
stream

• Create an abstraction data are transmitted or
received one byte at a time, reliably

• Maintain the order of the bytes

• Guarantee delivery of data, or an error is reported

• Must establish connection

4/16/2018 CUNY | Brooklyn College 26

TCP and UDP Port Numbers

• For multiplexing and demultiplexing, how do we
differentiate multiple processes (running programs)
on a host?

• UDP port numbers

• 16 bit integer

• Use them to differentiate different processes on a host

• TCP port numbers

• 16 bit integer

• Use them to differentiate different processes on a host

4/16/2018 CUNY | Brooklyn College 27

List TCP/UDP Port Statistics

• Use netstat , available on many operating systems (Windows, OS X,
Linux …)

• Windows

• Examples

• netstat -n -o -p TCP; netstat -f -o -p TCP; netstat -n -o -p UDP; and netstat -f -o -p
TCP

• Linux

• Examples

• netstat –n –p -a -t; netstat –p -a -t; netstat –n –p -a -u; and netstat–p -a -u

• OS X

• Examples

• netstat -n –a –p tcp; netstat –a –p tcp; netstat -n –a –p udp; and netstat –a –p udp;

4/16/2018 CUNY | Brooklyn College 28

Some Practical Considerations

• Is a port (TCP, UDP, or both) available to our own programs?

• 1 – 1023 are privileged

• Registered ports (with iana.org, sometimes called well-known or service ports)

• See /etc/services on Mac OS X, or, Linux or Unix

• See C:\Windows\system32\drivers\etc\services on Windows

• A process may be running and assigned (called bound to) one or more ports

• A port can only be assigned to a single process

• Does the host-based or network-based firewall get in your way (at
home, at the college, or at the coffee shop …)?

• A firewall is an application that filter out some IP packets/TCP segments/UDP
datagrams

• Commonly, an organization only allows traffics to a small number of registered
ports (e.g., 80 for HTTP, 443 for HTTPS, 53 for DNS)

4/16/2018 CUNY | Brooklyn College 29

Questions?

• Multiplexing and demultiplexing over the
Internet

• TCP and UDP

• TCP port and UDP port

• Query network statistics on a host

• Some practical consideration

• What ports are available for us to use in our own
programs?

4/16/2018 CUNY | Brooklyn College 30

Programming with TCP and UDP

• Java network applications typically use TCP or UDP to
communicate

• Typically no need to concern with innerworkings of TCP or UDP

• Use java.net package or other network related packages

• TCP communications

• The Socket, ServerSocket, URL, and URLConnection classes

• UDP communications

• The DatagramPacket, DatagramSocket, and MulticastSocket classes

• Need to understand the concept of Socket

• Most lower-level networking APIs are modeled after the Berkeley
Socket API

4/16/2018 CUNY | Brooklyn College 31

Socket

• A data structure (or an object) representing a
two-way communication link between two
programs running on the network

• Two end points

• Local and remote end points

• Each is a combination of IP address and port number

• IP address: identify a host

• Port number: identify a process (running program) on the
host

4/16/2018 CUNY | Brooklyn College 32

TCP Socket: Client and Server

• TCP requires to establish a connection

• Client and server

• Client

• The program that actively initiates the connection
establishment

• Server

• The program that passively waits for the client to
connect to it, and accepts the connection

• It is always that a client connects to the server, and
server accepts the connection request in this context

4/16/2018 CUNY | Brooklyn College 33

TCP Socket in Java

• Socket and ServerSocket classes

• Represent the connection between a client program and a
server program.

• A connection has two end points, so a socket usually has two end
points (local and remote)

• Socket class

• Represent the connection at the client side of the connection

• ServerSocket class

• Present the connection at the server side of the connection

• Low-level communication directly using TCP

4/16/2018 CUNY | Brooklyn College 34

TCP Client-Server Application
using Sockets
• A server programs runs on a host and has a socket that is bound to a port number and an

IP address.

• The server just waits, listening to the socket for a client to make a connection request.

• The client attempts to connect to the server program by using the server’s address and
port to which the server is listening to (service address and port).

• To identify itself to the server, the client binds to a local port number (usually assigned by the
system, not done by the programmer) that it will use during this connection.

• When the server accepts the connection, the server does the following,

• It creates a new socket bound to the same local port (local endpoint) and also has its remote
endpoint set to the address and port of the client.

• It can continue to listen to the original socket for connection requests while tending to the needs
of the connected client using the newly created socket

• On the client side, the socket is ready if the connection is accepted at the server

• The client and server can now communicate by writing to or reading from their sockets.

4/16/2018 CUNY | Brooklyn College 35

I/O Streams and TCP Socket in
Java

• A TCP socket represents a connection at
either the client or the server

• Socket can be source or destination of I/O
streams

• We can obtain an InputStream or an
OutputStream from a socket

• High-level streams can be created by wrapping
the InputStream or the OutputStream

4/16/2018 CUNY | Brooklyn College 36

Example: Download a File

• Use try-catch-finally to handle errors and
release resources

• Can you use try-with-resources instead?

• Regardless which one to use, make sure all
the resources are closed

• Communication: unicast (one-to-one)

4/16/2018 CUNY | Brooklyn College 37

Questions

• Concept of socket

• TCP socket in Java

• Concept of client and server

• TCP sockets and I/O streams

• Communication: unicast

• Make sure all resources are released

4/16/2018 CUNY | Brooklyn College 38

Questions

• Networking fundamentals

• Network interfaces

• Sockets and network I/O

• Reliable socket and byte streams

4/16/2018 CUNY | Brooklyn College 39

Assignments

• Practice assignments

• Project 4

4/16/2018 CUNY | Brooklyn College 40

