CISC 3120
C17: I/0O Streams and File

I/0

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Outline

Recap and issues

* Review your progress

« Assignments: Practice, Codelab, and Project
Exception Handling
Introduction to Paths and Files
File Input/Output and Input/Output Streams
A few related concepts

* Character and character encoding

« Formatted I/0 and unformatted I/0O

« Buffered I/0 and unbuffered I/0

+ Sequential and random access

Assignment

Path and File

» Concept of path in OS
* The Path interface and Paths helper class
* The File and Files classes

File System Trees

* A file system stores and organizes files on some
form of media allowing easy retrieval

* Most file systems in use store the files ina
tree (or hierarchical) structure.

* Root node at the top

 Children are files or directories (or folders in
Microsoft Windows)

* Each directory/folder can contain files and
subdirectories

Path

« Identify a file by its path through
the file system free, beginning
from the root node

« Example: identify Hwl.txt

Or
C:\ (Windows)

/ (OS X, Linux, Unix)

/\

home

alice bob

A

Hwl.txt

« OS X

« /home/alice/Hwl.txt
« Windows

« C:\home\alice\Hwl.txt
« Delimiter

« Windows: "\"

« Unix-like: */"

4/9/2018 CUNY | Brooklyn College

data

N

Readme.txt

Relative and Absolute Path

 Absolute path

« Contains the root element and the complete directory list required
to locate the file

« Example: /home/alice/Hwl.txt or C:\home\alice\Hw1.txt
* Relative path
* Needs to be combined with another path in order to access a file.

« Example

* alice/Hwl.txt or alice\Hwl.txt, without knowing where alice is, a program
cannot locate the file

« ""is the path representing the current working directory

« "."is the path representing the parent of the current working
directory

Symbolic Link and Hard Link

* A file-system object (source) that points to another
file system object (target).

« Symbolic link (soft link): an "alias” to a file or directory
name

* Hard link: another name of a file or directory

Symbolic Link (or

Soft Link) Hard Link

4

File or Directory

File or Directory

Name Content on Disk (e.g.,

inode in Linux)

4/9/2018 CUNY | Brooklyn College 7

Transparency to Users

* Links are transparent to users

* The links appear as normal files or directories,
and can be acted upon by the user or application
in exactly the same manner.

» Create symbolic links from the Command
Line
« Unix-like: In
« Windows: mklink

Unix-like OS: Example

* Unix-like (e.g., Linux, OS X): "#" leads a comment. do the following on the terminal,

echo “hello, world!" > hello.txt
In -s hello.txt hello_symlink.txt
Is -I hello_symlink.txt

cat hello_symlink.txt

In hello.txt hello_hardlink.txt
In -1 hello_hardlink.txt

cat hello_hardlink.txt

mv hello.txt hello2.txt

Is -1 hello_symlink.txt

In -1 hello_hardlink.txt

cat hello_symlink.txt

cat hello_hardlink.txt

create a file, the content is “hello, world!"
create a soft link to hello.txt

list the file, what do we observe?

show the content using the symbolic link, what do we observe?
create a hard link

observation?

observation?

rename hello.txt

observation?

observation?

observation?

observation

Window: Example

On Windows, it requires elevated privilege to create file symbolic link. Do not type the

explanation in *()".

echo “hello, world!" > hello.tx*t (create a file, the content is “hello, world!")

mklink hello_symlink.txt hello.txt (create a soft link to hello.txt)

dir hello_symlink.txt (list the file, what do we observe?)

more hello_symlink.txt (show the content using the symbolic link, what do we observe?)

mklink /h hello_hardlink.txt hello.txt (create a hard link to hello.txt)

dir hello_hardlink.txt (observation?)
more hello_hardlink.txt (observation?)
move hello.txt hello2.txt (rename hello.txt)
dir hello_symlink.txt (observation?)
dir hello_hardlink.txt (observation?)
more hello_symlink.txt (observation?)

more hello_hardlink.txt (observation?)

Questions?

» Concept of file system frees
» Concept of paths

* Traversal of file system trees
* Absolute path
* Relative path

« Symbolic link and hard link

The Path Interface

A programmatic representation of a path in the
file system.

« Use a Path object to examine, locate, manipulate
files

« Tt contains the file name and directory list used to
construct the path.

* Reflect underlying file systems, is system-
dependent.

* The file or directory corresponding to the Path
might not exist.

Path Operations: Example

* Creating a Path

* Retrieving information about a Path

» Removing redundancies from a Path

* Converting a Path

« Joining two Paths

* Creating a relative Path of two Paths

« Comparing two Paths

* PathDemoCLI in the Sample Programs repository

Obtain an Instance of Path

 The Paths helper class

Modifier and Type Method and Description

static Path get(String first, String... more)

Converts a path string, or a sequence of strings that when joined form a path string, to a Path.

static Path get(URI uri)

Converts the given URI to a Path object.

« Examples

* Path pl = Paths.get(‘alice/hwl.txt');

* Path pl = Paths.get(alice’, 'hwl.txt');

 Path p3 =
Paths.get(URI.create("file://C:\\home\\alice\\Hw1.txt")):

 Paths.get methods is equivalent to
FileSystems.getDefault().getPath methods

Retrieve Information about a
Path

» Use various methods of the Path interface

// On Microsoft Windows use:

Path path = Paths.get("C:\\home\\alice\\hwl.txt");

// On Unix-like OS (Mac OS X) use:

// Path path = Paths.get("/home/alice/hwl.txt");
System.out.format("toString: %s%n", path.toString()):
System.out.format("getFileName: %s%n", path.getFileName()):
System.out.format("getName(0): %s%n", path.getName(0));
System.out.format("getNameCount: %d7%n", path.getNameCount());
System.out.format("subpath(0,2): %s%n", path.subpath(0,2));
System.out.format("getParent: %s%n", path.getParent());
System.out.format("getRoot: %s%n", path.getRoot());

More about Path

* Normalize a Path and remove redundancy

 Convert a Path
« Toa URI
« To absolute Path
* To real Path

« Join two Paths
* Creating a relative Path of two Paths
« Compare two Paths, iterate Path

Convert to Real Path

 The Path.toRealPath method returns the real path
of an existing file.

 If true is passed to this method and the file system
supports symbolic links, this method resolves any symbolic
links in the path (thus, the real path)

 If the Path is relative, it returns an absolute path.

« If the Path contains any redundant elements, it returns a
path with those elements removed.

* The method checks the existence of the Path

It throws an exception if it does not exist or cannot be
accessed.

Compare Two Paths, Iterate
Path

* Equals: test two paths for equality

* startsWith and endsWith: test whether a
path begins or ends with a particular string

e Tterator: iterate over names of a Path

» Comparable: compare Path, e.g., for sorting

File and Legacy File I/0

» Path & File in Java: evolving in Java
» java.nio.file.Path since version 1.7

» java.io.file since version 1.0

* Generally, the Path interface can do
everything the File class (legacy) can do
* Implication

 Use Path for new applications

Limitation of Legacy File I/O

* Many methods don't throw exceptions when they fail

« The rename method does not work consistently across
platforms

« Support for symbolic links is limited

« Support for file system meta data is limited (file permissions,
ownership, and other access control attributes)

« Access to file meta data is inefficient
* Many File's methods do not scale to large file systems

* Deadling with file system tree that has circular symbolic links is
difficult and unreliable

From File to Path

* The File class has a toPath method

« Example
* File file = ...
* Path fp = file.toPath():
« We can now take advantage of what Path is to offer

« Example: delete a file
* Path fp = file.toPath();
* Files.delete(fp);
 Instead of
* file.delete();

Mapping Legacy I/0 to New
I/0 Functionality

« See Oracle's Java tutorial aft,

* https://docs.oracle.com/javase/tutorial/essentia
|/io/legacy.html

* where you should examine the mapping table
closely

4/9/2018 CUNY | Brooklyn College 22

https://docs.oracle.com/javase/tutorial/essential/io/legacy.html

Questions?

« Recommendation: use java.nio instead of java.io whenever possible

« With Java Path interface and Paths utility class
« Concept of path
« Creating a Path
* Refrieving information about a Path
 Removing redundancies from a Path
« Converting a Path
« Joining two Paths
* Creating a relative Path of two Paths

« Comparing two Paths

« A file (both file and directory) corresponding to a Path object may
not exist, how do we know if it exists, and its state?

Input and Output Streams

« A stream is a sequence of data associated with an input source
or an output destination.

 Input source or output destination
* Files, network end point, standard I/0, memory array, programs

* A program uses an input stream to read data from a source, one item
at a time

A program uses an output stream to write data to a destination, one
item at time

Source or

) : data || dat data | ... data
destination afa || 9ata atd

Program

4/9/2018 CUNY | Brooklyn College 24

Sequence of Data

 What are the data? What kind of data?

 Sequence of bytes: byte streams
 Sequence of characters: character streams

« Sequence of values of any primitive data type: data
streams

 Sequence of Objects: object streams

Source or
R data || data || data | ... data
destination Program

4/9/2018 CUNY | Brooklyn College 25

Questions?

» Concept of I/0 streams
» Different types of I/0 streams

Byte Stream

* Programs use byte streams to perform input and output of 8-
bit bytes.

 Read or write one or more bytes at a time

 Most basic streams

* A value of any other type of data can be considered as a
sequence of one or more types

« Two abstract classes: InputStream, OutputStream

« Use concrete subclasses

Source or
destination

byte || byte || byte | ... byte Program

4/9/2018 CUNY | Brooklyn College 27

Use Byte Streams

Low-level, you may have better options

Instantiate concrete subclass of the InputStream or
OutputStream class

- Common types of sources or destinations: files, byte arrays, audio
input, and others

« Example: using files as sources or destinations of streams

 FileInputStream, FileOutputStream
Must close streams to release resources

I/0 may cause errors, deal with exceptions

« Example: cannot create streams, cannot read or write fo streams

Byte Stream: Examples

 Use try-catch-finally

* The finally block will be executed regardless
try { // initialize resources }
catch (...){ ..}
finally { // close stream }

+ Use try-with-resources

« If the resource is autoclosable (e.g., a stream), we may be better off using
the try-with-resources

try (// initialize resources)
catch(..) {}

 Resources closed automatically in the reverse order they are initialized.

« See the examples in the Sample Programs repository

Questions?

* Concept of byte streams
* InputStream and OutputStream

Character Stream

* Programs use character streams to perform input and output
of Unicode characters

» Read or write one or more characters at a time

A character is a 16-bit Unicode
 Two abstract classes: Reader, Writer

« Use concrete subclasses

Source or
destination

char || char || char | ... char Program

4/9/2018 CUNY | Brooklyn College

Characters

* Basic units to form written text
 Each language has a set of characters
* Generally, a character is a code (a binary number)

* A character can have many different glyphs (graphical
representation)

* The 15" letter in the English Alphabet

e Character "a": q, a, a, a, ...

Binary : Table Gr'aphical.
Representation K g representation
(character code) Lookups (glyph)

4/9/2018 CUNY | Brooklyn College

32

Unicode

A single coding scheme for written texts of the world's languages and symbols

Each character has a code point

* Originally 16-bit integer (0x0000 - Oxffff), extended to the range of
(0x0 - Ox10ffff), e.g., U+0000, U+0001, ..., U+2F003, ..., U+FF0O03, ...,
U+10FFFF

All the codes form the Unicode code space

« Divided into planes, each plane is divided into blocks

* Basic Multilingual Plane (BMP), the 15t plane, where a language occupies one or
mote blocks

Encoding schemes

« Express a code point in bytes: in UTF-8, use 1 to 4 bytes (grouped into
code units) to represent a code point (space saving, backward
comparability with ASCIT)

« Code units

Encoding Scheme: Code Point
and Code Units: Examples

* All code units are in hexadecimal.

U+0041 U+00DF U+6771 U+10400
point

Representative

glyph

UTF-32 code units 00000041 00000O0ODF 00006771 00010400
UTF-16 code units 0041 OODF 6771 D801 DCOO
UTF-8 code units 41 C3 9F E6 9D B1 FO 90 90 80

4/9/2018 CUNY | Brooklyn College 34

Characters in the Java Platform

* Original design in Java

* A character is a 16-bit Unicode
* A Unicode 1.0 code point is a 16-bit integer

« Java predates Unicode 2.0 where a code point was extended to the range (0xO0 -
Ox10ffff).

« Example: U+0012: "\u0012'
* Evolved design: a character in Java represents a UTF-16 code unit

« The value of a character whose code point is no above U+FFFF is its code
point, a 2-byte integer

« The value of a character whose code point is above U+FFFF are 2 code units or
2 2-byte integers ((high surrogate: U+D800 ~ U+DBFF and low surrogate:
U+DCOO0 to U+DFFF)

* InLow-level APT: Use code point, a value of the int type (e.g., static
methods in the Character class)

Use Character Streams

On a higher level than byte stream

* Generally, for human consumption since a character is a character in a natural
langauge

Instantiate concrete subclass of the Reader or Writer class

« Common sources or destinations: files, character arrays, strings, byte
streams, and others

« Example: using files as sources or destinations
+ FileReader, FileWriter: use default character encoding only

« InputStreamReader, OutputStreamWriter: can specify character encoding
Must close streams to release resources

I/0 may cause errors, deal with exceptions

« Example: cannot create streams, cannot read or write to streams

Character Stream: Examples

 Use try-catch-finally
* Use try-with-resources

* Important question: which character encoding is
in use?

* Reader and Writer's encoding scheme should match.
« Examples in the Sample Programs repository
* CharFileCopier: uses default character encoding

* CharFileStreamCopier: uses user provided character
encoding

Questions

* Character, character encoding

« Unicode, Unicode code unit, Unicode code
point

* Characters in the Java platform

* Character streams

* Using default character encoding (what is the
default encoding)?

» Using user provided character encoding

Data Streams

 Data streams represents sequences of primitive
data type values and String values in their internal
representation (raw types)

* boolean, char, byte, short, int, long, float, and double as
well as String values in internal (called raw or binary
representation) representation

« Unformatted I/0O
» Two interfaces: DataInput and DataOutput

Source or
. s boolean || char | | short | lon
destination 8 Program

4/9/2018 CUNY | Brooklyn College 39

Data Streams: Example

 Use DataInputStream (implementing DataInput)

 Read primitive Java data type values from an underlying
input stream in a portable way (machine-independent way)

« Work with files: construct a FileInputStream first
 Use DataOutputStream (implementing DataOutput)

 write primitive Java data type values to an output stream
in a portable way

« Work with files: construct a FileOutputStream first
 Use a Hex editor to examine file content
* In Eclipse, install a Hex Editor from Eclipse Marketplace

Questions?

e Data streams

* read boolean, char, byte, short, int, long, float,
double, and String values

* write boolean, char, byte, short, int, long, floaf,
double, and String values

Formatted and Unformatted
I/0

« Unformatted I/0

« Transfers the internal (binary or raw) representation of the data
directory between memory and the file

« Example: read or write binary files
* with DataInputStream, DataOutputStream
* Formatted I/0

 Converts the internal (binary or raw) representation to characters
before transferring to file

« Converts to the internal binary representation from characters when
transferring from a file

« Example: read and write text files

« with Scanner, PrintWriter (and PrintStream)

Formatted Input: Example

 Use Scanner

« Scanner breaks down inputs into tokens using a
delimiter pattern

* Delimiter pattern is expressed in Regular
Expressions

 Default delimiter pattern is whitespace

* The tokens may then be converted into values
of primitive types or Strings using the various
next methods.

Formatted Output: Example

e Use PrintWriter and PrintStream

« System.out and System.err are PrintStream
objects

* Formatting
* PrintWriter and PrintStream support formatting
* String also supports formatting

 One may use character streams to do formatted I/O

* Similar to C/C++'s printf-family functions

Standard Streams

« Many operating systems have Standard
Streams.

* By default, they read input from the keyboard
and write output to the display.

« Standard Output Streams
 Standard output: System.out, a PrintStream object
« Standard error: System.err, a PrintStream object
« Standard Input Streams
« Standard input: System.in, a byte stream

The Console Class

* Access the character-based console device
associated with current JVM

* Not every JVM has a console
» If it has one, obtain it via System.console()

 If it doesn't, System.console() returns null

» A few read and write methods

Formatted or Unformatted?

S Formatted | Unformatted

Example Text files Binary files
Efficiency Slower Faster
Space Larger Smaller
Fidelity Not exact Exact
Portability More Less

Human Readability More Less

4/9/2018 CUNY | Brooklyn College 47

Culture and Formatted I/0O

 Formatted I/0 are often used for humans

« Our culture influences how we write and read, and
how we format text

« Example
German (Germany) 123.456,789
German (Switzerland) 123'456.789
English (United States) 123,456.789

* Do you have any other examples?

« How about numbers, currency, date, calendar, ...

4/9/2018 CUNY | Brooklyn College 48

Locale

* Language and geographic environment are two important
influences on our cultfure

* Locate in a computer system is to represent this concept
« Language and geographical region (e.g., country)

- Java
- java.util.Locale

* When use formatted I/O, we should always consider
* Locale

 Character encoding

Questions

* Concepts of Formatted I/0 and Unformatted
I/0

 When to use Formatted I/0 and Unformatted
I/0?

« How to use Formatted I/0 and Unformatted
I/0?

« Examples?
 PrintWriter, and Scanner
* Locale, character encoding

Object Streams

» Object streams represent a sequence of graphs of
Java objects and primitive data type values

« Objects must be serializable (corresponding class
implements the java.io.Serializable interface)

« An object may reference another object, forming a graph

of objects

int

object

Source or object
destination

object

4/9/2018

CUNY | Brooklyn College

51

Object Streams: Example

» ObjectInputStream, ObjectOutputStream

* They implement ObjectInput and ObjectOutput
» ObjectInput is a sub-interface of DataInput
» ObjectOutput is a sub-interface of DataOutput

* Object streams are data streams of serialized
objects and primitive type values

* More when we discuss I/0 via computer
networks

Questions?

» Concept of object streams
» Serialized objects

» Example application

Memory Buffer for Streams

* A memory buffered may be allocated with a
stream to increase I/0 efficiency

« Unbuffered streams
» Buffered streams

Buffered and Unbuffered

Streams

e Unbuffered I/0 and Streams

* Each read or write request is handled directly by the
underlying OS.

 Each request often triggers disk access, network activity,
or others

» Buffered I/0O and streams.

« Buffered input streams read data from a memory area known as
a buffer; the native input API is called only when the buffer is

empty.

« Similarly, buffered output streams write data to a buffer, and
the native output API is called only when the buffer is full

 Buffered I/O streams are generally more efficient.

Buffered Streams

* Byte streams
* BufferedInputStream
 BufferedOutputStream
 Character streams

« BufferedReader
e BufferedWriter

Use Buffered Streams

* Wrap an unbuffered streams with a buffered stream
« Example

* reader = new BufferedReader(new FileReader("kaynmay.txt"));
« writer = new BufferedWriter(new FileWriter(" kaynmay.txt "));
* in = new BufferedInputStream(new FileInputStream("keynmay.bin"));

* out = new BufferedOutputStream(new FileOutputStream("keynmay.bin")):
* Flushing buffered output streams
« Write out a buffer at critical points, without waiting for it to fill.
* To flush a buffered output stream manually, invoke its flush method.
« Some buffered output classes support autoflush

« Example: an autoflushable PrintWriter object flushes the buffer on every
invocation of printin or format.

Questions

» Concept of buffered I/0

* Buffered streams

* Flush buffered streams

* How about unbuffered streams?

« Examples

« We can easily revise the example application
discussed to use buffered streams

Random Access and Sequential
Access

« Sequential access

 Read sequentially, byte or character or other units are
read sequentially one after another

* Generally, streams must be read sequentially

 Random access

* Behaves like a large array of bytes stored in the file
system.

 Any byte or character or other units can be read without
having to read anything before it first

 RandomAccessFile

Random Access File

* Generally, provides
 Length
* the size of the file
* File pointer/Cursor

* an index into the implied array, pointing to the byte next read reads
from or next write writes to.

 Each read or write results an advancement of the pointer
« The file pointer can be obtained

 Seek:
* Set the file pointer

* Generally, unformatted files (binary files)

When to use Random Access
Files?

* For applications
» only interested in a portion of the file.

* read and write large files that cannot be load
into the memory

Random Access File: Example

* The File and Files classes
 RandomAccessFile

« Use RandomAccessFile

* Must be opened in a mode
* "r": read-only
* "rw": read & write
* "rws": read, and write content & metadata synchronously

“rwd": read, and write content synchronously

Questions

» Concept of sequential and random access

« Use random access files

More about Files and Paths

« File, Path, Files, and Paths

* File operations use system resources

* Release resources, one of the two, if permissible
close() method to release resources explicitly

Try-with-resources blocks (if implemented Autocloseable)
* File operations often throws exceptions
* Catch or specify requirement for the exceptions
« Method chaining
 Link awareness
 Variable arguments (varargs)
« Some file operations are “atomic”

« Two methods of Files accept Glob parameter

Questions

* Check a file or a directory
* Delete, copy, or move a file or directory
* Manage metadata, i.e., file and file store attributes

« Read, write, and create files; create and read
directories; read, write, and create random access file

* Create and read directories
* Deal with Links

« Walk a file tree, find files, watch a directory for
changes

Assignments

* Practice assignments include bonus
assignments

