
CISC 3120

C17: I/O Streams and File
I/O
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

4/9/2018 1CUNY | Brooklyn College

Outline

• Recap and issues

• Review your progress

• Assignments: Practice, CodeLab, and Project

• Exception Handling

• Introduction to Paths and Files

• File Input/Output and Input/Output Streams

• A few related concepts

• Character and character encoding

• Formatted I/O and unformatted I/O

• Buffered I/O and unbuffered I/O

• Sequential and random access

• Assignment

4/9/2018 CUNY | Brooklyn College 2

Path and File

• Concept of path in OS

• The Path interface and Paths helper class

• The File and Files classes

4/9/2018 CUNY | Brooklyn College 3

File System Trees

• A file system stores and organizes files on some
form of media allowing easy retrieval

• Most file systems in use store the files in a
tree (or hierarchical) structure.

• Root node at the top

• Children are files or directories (or folders in
Microsoft Windows)

• Each directory/folder can contain files and
subdirectories

4/9/2018 CUNY | Brooklyn College 4

Path

• Identify a file by its path through
the file system tree, beginning
from the root node

• Example: identify Hw1.txt

• OS X

• /home/alice/Hw1.txt

• Windows

• C:\home\alice\Hw1.txt

• Delimiter

• Windows: “\”

• Unix-like: “/”

4/9/2018 CUNY | Brooklyn College 5

/ (OS X, Linux, Unix)
Or
C:\ (Windows)

home data

alice bob Readme.txt

Hw1.txt

Relative and Absolute Path

• Absolute path

• Contains the root element and the complete directory list required
to locate the file

• Example: /home/alice/Hw1.txt or C:\home\alice\Hw1.txt

• Relative path

• Needs to be combined with another path in order to access a file.

• Example

• alice/Hw1.txt or alice\Hw1.txt, without knowing where alice is, a program
cannot locate the file

• “.” is the path representing the current working directory

• “..” is the path representing the parent of the current working
directory

4/9/2018 CUNY | Brooklyn College 6

Symbolic Link and Hard Link

• A file-system object (source) that points to another
file system object (target).

• Symbolic link (soft link): an “alias” to a file or directory
name

• Hard link: another name of a file or directory

4/9/2018 CUNY | Brooklyn College 7

File or Directory
Content on Disk (e.g.,

inode in Linux)

File or Directory
Name

Hard Link
Symbolic Link (or

Soft Link)

Transparency to Users

• Links are transparent to users

• The links appear as normal files or directories,
and can be acted upon by the user or application
in exactly the same manner.

• Create symbolic links from the Command
Line

• Unix-like: ln

• Windows: mklink

4/9/2018 CUNY | Brooklyn College 8

Unix-like OS: Example

• Unix-like (e.g., Linux, OS X): “#” leads a comment. do the following on the terminal,

• echo “hello, world!” > hello.txt # create a file, the content is “hello, world!”

• ln -s hello.txt hello_symlink.txt # create a soft link to hello.txt

• ls -l hello_symlink.txt # list the file, what do we observe?

• cat hello_symlink.txt # show the content using the symbolic link, what do we observe?

• ln hello.txt hello_hardlink.txt # create a hard link

• ln -l hello_hardlink.txt # observation?

• cat hello_hardlink.txt # observation?

• mv hello.txt hello2.txt # rename hello.txt

• ls -l hello_symlink.txt # observation?

• ln -l hello_hardlink.txt # observation?

• cat hello_symlink.txt # observation?

• cat hello_hardlink.txt # observation

4/9/2018 CUNY | Brooklyn College 9

Window: Example

• On Windows, it requires elevated privilege to create file symbolic link. Do not type the
explanation in “()”.

• echo “hello, world!” > hello.txt (create a file, the content is “hello, world!”)

• mklink hello_symlink.txt hello.txt (create a soft link to hello.txt)

• dir hello_symlink.txt (list the file, what do we observe?)

• more hello_symlink.txt (show the content using the symbolic link, what do we observe?)

• mklink /h hello_hardlink.txt hello.txt (create a hard link to hello.txt)

• dir hello_hardlink.txt (observation?)

• more hello_hardlink.txt (observation?)

• move hello.txt hello2.txt (rename hello.txt)

• dir hello_symlink.txt (observation?)

• dir hello_hardlink.txt (observation?)

• more hello_symlink.txt (observation?)

• more hello_hardlink.txt (observation?)

4/9/2018 CUNY | Brooklyn College 10

Questions?

• Concept of file system trees

• Concept of paths

• Traversal of file system trees

• Absolute path

• Relative path

• Symbolic link and hard link

4/9/2018 CUNY | Brooklyn College 11

The Path Interface

• A programmatic representation of a path in the
file system.

• Use a Path object to examine, locate, manipulate
files

• It contains the file name and directory list used to
construct the path.

• Reflect underlying file systems, is system-
dependent.

• The file or directory corresponding to the Path
might not exist.

4/9/2018 CUNY | Brooklyn College 12

Path Operations: Example

• Creating a Path

• Retrieving information about a Path

• Removing redundancies from a Path

• Converting a Path

• Joining two Paths

• Creating a relative Path of two Paths

• Comparing two Paths

• PathDemoCLI in the Sample Programs repository

4/9/2018 CUNY | Brooklyn College 13

Obtain an Instance of Path

• The Paths helper class

• Examples

• Path p1 = Paths.get(‘alice/hw1.txt’);

• Path p1 = Paths.get(‘alice’, ‘hw1.txt’);

• Path p3 =
Paths.get(URI.create("file://C:\\home\\alice\\Hw1.txt"));

• Paths.get methods is equivalent to
FileSystems.getDefault().getPath methods

4/9/2018 CUNY | Brooklyn College 14

Retrieve Information about a
Path

• Use various methods of the Path interface

4/9/2018 CUNY | Brooklyn College 15

// On Microsoft Windows use:
Path path = Paths.get("C:\\home\\alice\\hw1.txt");
// On Unix-like OS (Mac OS X) use:
// Path path = Paths.get("/home/alice/hw1.txt");
System.out.format("toString: %s%n", path.toString());
System.out.format("getFileName: %s%n", path.getFileName());
System.out.format("getName(0): %s%n", path.getName(0));
System.out.format("getNameCount: %d%n", path.getNameCount());
System.out.format("subpath(0,2): %s%n", path.subpath(0,2));
System.out.format("getParent: %s%n", path.getParent());
System.out.format("getRoot: %s%n", path.getRoot());

More about Path

• Normalize a Path and remove redundancy

• Convert a Path

• To a URI

• To absolute Path

• To real Path

• Join two Paths

• Creating a relative Path of two Paths

• Compare two Paths, iterate Path

4/9/2018 CUNY | Brooklyn College 16

Convert to Real Path

• The Path.toRealPath method returns the real path
of an existing file.

• If true is passed to this method and the file system
supports symbolic links, this method resolves any symbolic
links in the path (thus, the real path)

• If the Path is relative, it returns an absolute path.

• If the Path contains any redundant elements, it returns a
path with those elements removed.

• The method checks the existence of the Path

• It throws an exception if it does not exist or cannot be
accessed.

4/9/2018 CUNY | Brooklyn College 17

Compare Two Paths, Iterate
Path

• Equals: test two paths for equality

• startsWith and endsWith: test whether a
path begins or ends with a particular string

• Iterator: iterate over names of a Path

• Comparable: compare Path, e.g., for sorting

4/9/2018 CUNY | Brooklyn College 18

File and Legacy File I/O

• Path & File in Java: evolving in Java

• java.nio.file.Path since version 1.7

• java.io.file since version 1.0

• Generally, the Path interface can do
everything the File class (legacy) can do

• Implication

• Use Path for new applications

4/9/2018 CUNY | Brooklyn College 19

Limitation of Legacy File I/O

• Many methods don’t throw exceptions when they fail

• The rename method does not work consistently across
platforms

• Support for symbolic links is limited

• Support for file system meta data is limited (file permissions,
ownership, and other access control attributes)

• Access to file meta data is inefficient

• Many File’s methods do not scale to large file systems

• Dealing with file system tree that has circular symbolic links is
difficult and unreliable

4/9/2018 CUNY | Brooklyn College 20

From File to Path

• The File class has a toPath method

• Example

• File file = …

• Path fp = file.toPath();

• We can now take advantage of what Path is to offer

• Example: delete a file

• Path fp = file.toPath();

• Files.delete(fp);

• Instead of

• file.delete();

4/9/2018 CUNY | Brooklyn College 21

Mapping Legacy I/O to New
I/O Functionality

• See Oracle’s Java tutorial at,

• https://docs.oracle.com/javase/tutorial/essentia
l/io/legacy.html

• where you should examine the mapping table
closely

4/9/2018 CUNY | Brooklyn College 22

https://docs.oracle.com/javase/tutorial/essential/io/legacy.html

Questions?

• Recommendation: use java.nio instead of java.io whenever possible

• With Java Path interface and Paths utility class

• Concept of path

• Creating a Path

• Retrieving information about a Path

• Removing redundancies from a Path

• Converting a Path

• Joining two Paths

• Creating a relative Path of two Paths

• Comparing two Paths

• A file (both file and directory) corresponding to a Path object may
not exist, how do we know if it exists, and its state?

4/9/2018 CUNY | Brooklyn College 23

Input and Output Streams

• A stream is a sequence of data associated with an input source
or an output destination.

• Input source or output destination

• Files, network end point, standard I/O, memory array, programs

• A program uses an input stream to read data from a source, one item
at a time

• A program uses an output stream to write data to a destination, one
item at time

4/9/2018 CUNY | Brooklyn College 24

Source or
destination Programdata data data data……

Sequence of Data

• What are the data? What kind of data?

• Sequence of bytes: byte streams

• Sequence of characters: character streams

• Sequence of values of any primitive data type: data
streams

• Sequence of Objects: object streams

4/9/2018 CUNY | Brooklyn College 25

Source or
destination Programdata data data data……

Questions?

• Concept of I/O streams

• Different types of I/O streams

4/9/2018 CUNY | Brooklyn College 26

Byte Stream

• Programs use byte streams to perform input and output of 8-
bit bytes.

• Read or write one or more bytes at a time

• Most basic streams

• A value of any other type of data can be considered as a
sequence of one or more types

• Two abstract classes: InputStream, OutputStream

• Use concrete subclasses

4/9/2018 CUNY | Brooklyn College 27

Source or
destination Programbyte byte byte byte……

Use Byte Streams

• Low-level, you may have better options

• Instantiate concrete subclass of the InputStream or
OutputStream class

• Common types of sources or destinations: files, byte arrays, audio
input, and others

• Example: using files as sources or destinations of streams

• FileInputStream, FileOutputStream

• Must close streams to release resources

• I/O may cause errors, deal with exceptions

• Example: cannot create streams, cannot read or write to streams

4/9/2018 CUNY | Brooklyn College 28

Byte Stream: Examples

• Use try-catch-finally

• The finally block will be executed regardless

try { // initialize resources }

catch (...) { …}

finally { // close stream }

• Use try-with-resources

• If the resource is autoclosable (e.g., a stream), we may be better off using
the try-with-resources

try (// initialize resources)

catch(…) {}

• Resources closed automatically in the reverse order they are initialized.

• See the examples in the Sample Programs repository

4/9/2018 CUNY | Brooklyn College 29

Questions?

• Concept of byte streams

• InputStream and OutputStream

4/9/2018 CUNY | Brooklyn College 30

Character Stream

• Programs use character streams to perform input and output
of Unicode characters

• Read or write one or more characters at a time

• A character is a 16-bit Unicode

• Two abstract classes: Reader, Writer

• Use concrete subclasses

4/9/2018 CUNY | Brooklyn College 31

Source or
destination Programchar char char char……

Characters

• Basic units to form written text

• Each language has a set of characters

• Generally, a character is a code (a binary number)

• A character can have many different glyphs (graphical
representation)

• The 1st letter in the English Alphabet

• Character “a”: a, a, a, a, …

4/9/2018 CUNY | Brooklyn College 32

Binary
Representation

(character code)

Graphical
representation

(glyph)

Table
Lookups

Unicode

• A single coding scheme for written texts of the world’s languages and symbols

• Each character has a code point

• Originally 16-bit integer (0x0000 – 0xffff), extended to the range of
(0x0 – 0x10ffff), e.g., U+0000, U+0001, …, U+2F003, …, U+FF003, …,
U+10FFFF

• All the codes form the Unicode code space

• Divided into planes, each plane is divided into blocks

• Basic Multilingual Plane (BMP), the 1st plane, where a language occupies one or
mote blocks

• Encoding schemes

• Express a code point in bytes: in UTF-8, use 1 to 4 bytes (grouped into
code units) to represent a code point (space saving, backward
comparability with ASCII)

• Code units

4/9/2018 CUNY | Brooklyn College 33

Encoding Scheme: Code Point
and Code Units: Examples

• All code units are in hexadecimal.

4/9/2018 CUNY | Brooklyn College 34

Unicode code
point

U+0041 U+00DF U+6771 U+10400

Representative
glyph

A  東 

UTF-32 code units 00000041 000000DF 00006771 00010400

UTF-16 code units 0041 00DF 6771 D801 DC00

UTF-8 code units 41 C3 9F E6 9D B1 F0 90 90 80

Characters in the Java Platform

• Original design in Java

• A character is a 16-bit Unicode

• A Unicode 1.0 code point is a 16-bit integer

• Java predates Unicode 2.0 where a code point was extended to the range (0x0 –
0x10ffff).

• Example: U+0012: ‘\u0012’

• Evolved design: a character in Java represents a UTF-16 code unit

• The value of a character whose code point is no above U+FFFF is its code
point, a 2-byte integer

• The value of a character whose code point is above U+FFFF are 2 code units or
2 2-byte integers ((high surrogate: U+D800 ~ U+DBFF and low surrogate:
U+DC00 to U+DFFF)

• In Low-level API: Use code point, a value of the int type (e.g., static
methods in the Character class)

4/9/2018 CUNY | Brooklyn College 35

Use Character Streams

• On a higher level than byte stream

• Generally, for human consumption since a character is a character in a natural
langauge

• Instantiate concrete subclass of the Reader or Writer class

• Common sources or destinations: files, character arrays, strings, byte
streams, and others

• Example: using files as sources or destinations

• FileReader, FileWriter: use default character encoding only

• InputStreamReader, OutputStreamWriter: can specify character encoding

• Must close streams to release resources

• I/O may cause errors, deal with exceptions

• Example: cannot create streams, cannot read or write to streams

4/9/2018 CUNY | Brooklyn College 36

Character Stream: Examples

• Use try-catch-finally

• Use try-with-resources

• Important question: which character encoding is
in use?

• Reader and Writer’s encoding scheme should match.

• Examples in the Sample Programs repository

• CharFileCopier: uses default character encoding

• CharFileStreamCopier: uses user provided character
encoding

4/9/2018 CUNY | Brooklyn College 37

Questions

• Character, character encoding

• Unicode, Unicode code unit, Unicode code
point

• Characters in the Java platform

• Character streams

• Using default character encoding (what is the
default encoding)?

• Using user provided character encoding

4/9/2018 CUNY | Brooklyn College 38

Data Streams

• Data streams represents sequences of primitive
data type values and String values in their internal
representation (raw types)

• boolean, char, byte, short, int, long, float, and double as
well as String values in internal (called raw or binary
representation) representation

• Unformatted I/O

• Two interfaces: DataInput and DataOutput

4/9/2018 CUNY | Brooklyn College 39

Source or
destination Programboolean char short long……

Data Streams: Example

• Use DataInputStream (implementing DataInput)

• Read primitive Java data type values from an underlying
input stream in a portable way (machine-independent way)

• Work with files: construct a FileInputStream first

• Use DataOutputStream (implementing DataOutput)

• write primitive Java data type values to an output stream
in a portable way

• Work with files: construct a FileOutputStream first

• Use a Hex editor to examine file content

• In Eclipse, install a Hex Editor from Eclipse Marketplace

4/9/2018 CUNY | Brooklyn College 40

Questions?

• Data streams

• read boolean, char, byte, short, int, long, float,
double, and String values

• write boolean, char, byte, short, int, long, float,
double, and String values

4/9/2018 CUNY | Brooklyn College 41

Formatted and Unformatted
I/O
• Unformatted I/O

• Transfers the internal (binary or raw) representation of the data
directory between memory and the file

• Example: read or write binary files

• with DataInputStream, DataOutputStream

• Formatted I/O

• Converts the internal (binary or raw) representation to characters
before transferring to file

• Converts to the internal binary representation from characters when
transferring from a file

• Example: read and write text files

• with Scanner, PrintWriter (and PrintStream)

4/9/2018 CUNY | Brooklyn College 42

Formatted Input: Example

• Use Scanner

• Scanner breaks down inputs into tokens using a
delimiter pattern

• Delimiter pattern is expressed in Regular
Expressions

• Default delimiter pattern is whitespace

• The tokens may then be converted into values
of primitive types or Strings using the various
next methods.

4/9/2018 CUNY | Brooklyn College 43

Formatted Output: Example

• Use PrintWriter and PrintStream

• System.out and System.err are PrintStream
objects

• Formatting

• PrintWriter and PrintStream support formatting

• String also supports formatting

• One may use character streams to do formatted I/O

• Similar to C/C++’s printf-family functions

4/9/2018 CUNY | Brooklyn College 44

Standard Streams

• Many operating systems have Standard
Streams.

• By default, they read input from the keyboard
and write output to the display.

• Standard Output Streams

• Standard output: System.out, a PrintStream object

• Standard error: System.err, a PrintStream object

• Standard Input Streams

• Standard input: System.in, a byte stream

4/9/2018 CUNY | Brooklyn College 45

The Console Class

• Access the character-based console device
associated with current JVM

• Not every JVM has a console

• If it has one, obtain it via System.console()

• If it doesn’t, System.console() returns null

• A few read and write methods

4/9/2018 CUNY | Brooklyn College 46

Formatted or Unformatted?

Formatted Unformatted

Example Text files Binary files

Efficiency Slower Faster

Space Larger Smaller

Fidelity Not exact Exact

Portability More Less

Human Readability More Less

4/9/2018 CUNY | Brooklyn College 47

Culture and Formatted I/O

• Formatted I/O are often used for humans

• Our culture influences how we write and read, and
how we format text

• Example

• Do you have any other examples?

• How about numbers, currency, date, calendar, …

4/9/2018 CUNY | Brooklyn College 48

Language (Region) Formatted Numbers

German (Germany) 123.456,789

German (Switzerland) 123'456.789

English (United States) 123,456.789

Locale

• Language and geographic environment are two important
influences on our culture

• Locate in a computer system is to represent this concept

• Language and geographical region (e.g., country)

• Java

• java.util.Locale

• When use formatted I/O, we should always consider

• Locale

• Character encoding

4/9/2018 CUNY | Brooklyn College 49

Questions

• Concepts of Formatted I/O and Unformatted
I/O

• When to use Formatted I/O and Unformatted
I/O?

• How to use Formatted I/O and Unformatted
I/O?

• Examples?

• PrintWriter, and Scanner

• Locale, character encoding

4/9/2018 CUNY | Brooklyn College 50

Object Streams

• Object streams represent a sequence of graphs of
Java objects and primitive data type values

• Objects must be serializable (corresponding class
implements the java.io.Serializable interface)

• An object may reference another object, forming a graph
of objects

4/9/2018 CUNY | Brooklyn College 51

Source or
destination Programobject int object object……

Object Streams: Example

• ObjectInputStream, ObjectOutputStream

• They implement ObjectInput and ObjectOutput

• ObjectInput is a sub-interface of DataInput

• ObjectOutput is a sub-interface of DataOutput

• Object streams are data streams of serialized
objects and primitive type values

• More when we discuss I/O via computer
networks

4/9/2018 CUNY | Brooklyn College 52

Questions?

• Concept of object streams

• Serialized objects

• Example application

4/9/2018 CUNY | Brooklyn College 53

Memory Buffer for Streams

• A memory buffered may be allocated with a
stream to increase I/O efficiency

• Unbuffered streams

• Buffered streams

4/9/2018 CUNY | Brooklyn College 54

Buffered and Unbuffered
Streams
• Unbuffered I/O and Streams

• Each read or write request is handled directly by the
underlying OS.

• Each request often triggers disk access, network activity,
or others

• Buffered I/O and streams.
• Buffered input streams read data from a memory area known as

a buffer; the native input API is called only when the buffer is
empty.

• Similarly, buffered output streams write data to a buffer, and
the native output API is called only when the buffer is full

• Buffered I/O streams are generally more efficient.

4/9/2018 CUNY | Brooklyn College 55

Buffered Streams

• Byte streams

• BufferedInputStream

• BufferedOutputStream

• Character streams

• BufferedReader

• BufferedWriter

4/9/2018 CUNY | Brooklyn College 56

Use Buffered Streams

• Wrap an unbuffered streams with a buffered stream

• Example

• reader = new BufferedReader(new FileReader(“kaynmay.txt"));

• writer = new BufferedWriter(new FileWriter(" kaynmay.txt "));

• in = new BufferedInputStream(new FileInputStream(“keynmay.bin”));

• out = new BufferedOutputStream(new FileOutputStream(“keynmay.bin”));

• Flushing buffered output streams

• Write out a buffer at critical points, without waiting for it to fill.

• To flush a buffered output stream manually, invoke its flush method.

• Some buffered output classes support autoflush

• Example: an autoflushable PrintWriter object flushes the buffer on every
invocation of println or format.

4/9/2018 CUNY | Brooklyn College 57

Questions

• Concept of buffered I/O

• Buffered streams

• Flush buffered streams

• How about unbuffered streams?

• Examples

• We can easily revise the example application
discussed to use buffered streams

4/9/2018 CUNY | Brooklyn College 58

Random Access and Sequential
Access
• Sequential access

• Read sequentially, byte or character or other units are
read sequentially one after another

• Generally, streams must be read sequentially

• Random access

• Behaves like a large array of bytes stored in the file
system.

• Any byte or character or other units can be read without
having to read anything before it first

• RandomAccessFile

4/9/2018 CUNY | Brooklyn College 59

Random Access File

• Generally, provides

• Length

• the size of the file

• File pointer/Cursor

• an index into the implied array, pointing to the byte next read reads
from or next write writes to.

• Each read or write results an advancement of the pointer

• The file pointer can be obtained

• Seek:

• Set the file pointer

• Generally, unformatted files (binary files)

4/9/2018 CUNY | Brooklyn College 60

When to use Random Access
Files?

• For applications

• only interested in a portion of the file.

• read and write large files that cannot be load
into the memory

4/9/2018 CUNY | Brooklyn College 61

Random Access File: Example

• The File and Files classes

• RandomAccessFile

• Use RandomAccessFile

• Must be opened in a mode

• “r”: read-only

• “rw”: read & write

• “rws”: read, and write content & metadata synchronously

• “rwd”: read, and write content synchronously

4/9/2018 CUNY | Brooklyn College 62

Questions

• Concept of sequential and random access

• Use random access files

4/9/2018 CUNY | Brooklyn College 63

More about Files and Paths

• File, Path, Files, and Paths

• File operations use system resources

• Release resources, one of the two, if permissible

• close() method to release resources explicitly

• Try-with-resources blocks (if implemented Autocloseable)

• File operations often throws exceptions

• Catch or specify requirement for the exceptions

• Method chaining

• Link awareness

• Variable arguments (varargs)

• Some file operations are “atomic”

• Two methods of Files accept Glob parameter

4/9/2018 CUNY | Brooklyn College 64

Questions

• Check a file or a directory

• Delete, copy, or move a file or directory

• Manage metadata, i.e., file and file store attributes

• Read, write, and create files; create and read
directories; read, write, and create random access file

• Create and read directories

• Deal with Links

• Walk a file tree, find files, watch a directory for
changes

4/9/2018 CUNY | Brooklyn College 65

Assignments

• Practice assignments include bonus
assignments

4/9/2018 CUNY | Brooklyn College 66

