
CISC 3120

C16a: Model-View-Controller
and JavaFX Styling

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/28/2018 1CUNY | Brooklyn College

Outline

• Recap and issues

• Model-View-Controller pattern

• FXML and Scene Builder

• Styling user interface with CSS

• Brief introduction to graphics, media, and
charts

3/28/2018 CUNY | Brooklyn College 2

Applications: Data and View

• Many computer systems are to display data and update data in a data
store

• Two sets of terms

• Business logic: the modeling of the application domain (model, data,
business logic)

• User interfaces: the visual feedback to the users (view, presentation)

3/28/2018 CUNY | Brooklyn College 3

retrieve

update

Need to Separate Concerns

• User interfaces often changes more frequently than business
logic

• Applications may display the same set of data differently

• User interface design and application logic design require
different skill sets

• User interface design and user interface development are two
different concepts

• User interface code tends to be more device-dependent than
business logic

• Create automatic tests for user interfaces is generally more
difficult and time-consuming than business logic

3/28/2018 CUNY | Brooklyn College 4

Model-View-Controller

3/28/2018 CUNY | Brooklyn College 5

Model

Controller

View

Model-View-Controller

• It separates an application three separated
components/classes,

• (Model) the modeling of the application domain

• (View) the presentation,

• (Controller) and the actions based on user input

• A fundamental design pattern for the
separation of user interface from business
logic.

3/28/2018 CUNY | Brooklyn College 6

Model

• Model is independent of view and controller

• Manages the behavior and data of the
application domain

• Responds to requests for information about
its state (usually from the view)

• Responds to instructions to change state
(usually from the controller).

3/28/2018 CUNY | Brooklyn College 7

View

• Depends on model, but is independent of the
controller

• Manages the display of information.

3/28/2018 CUNY | Brooklyn College 8

Controller

• Depends on both model and view

• Interprets the mouse and keyboard inputs
from the user

• Inform the model and/or the view to change
as appropriate.

3/28/2018 CUNY | Brooklyn College 9

MVC Models

• Passive model

• Active model

3/28/2018 CUNY | Brooklyn College 10

Passive MVC Model

• One controller manipulates the model exclusively

• updates the model (data)

• inform the view that the model has changed and request
the view to refresh

3/28/2018 CUNY | Brooklyn College 11

:Controller :Model :View

handleEvent()
service()

getData()

notifyUpdate()

data

Passive MVC Model: Discussion

• Model is passive

• Model is completely independent of View and Controller

• Model does not notify View or Controller any changes on it

• Controller is responsible for updating model, and for
requesting view to refresh

• Often realized via dependency injection

• Limitation

• If model can be updated from multiple controllers, the
view may be out-of-date

3/28/2018 CUNY | Brooklyn College 12

Active MVC Model

• Introduce an observer

3/28/2018 CUNY | Brooklyn College 13

Model

Controller

View

<<interface>>
Observer

+update()

Model and View Interaction

• Separation of concerns: code/logic are
separated, but the objects interact

3/28/2018 CUNY | Brooklyn College 14

:Model :View

handleEvent()

getData()

service()
data

notifyObservers()

update()

:Controller

update()

Active MVC Model Discussion

• Model is active

• Model may change state without controller’s involvement

• e.g., in particular, when two or more sources may result in model update

• How do we separate model from view when model is active?

• Model updates view

• Realized via the Observer pattern

• Model is an observable that notifies view or controller that is an observer

• The model never requires specific information about any views

• Controller or model implements the Observer whenever necessary

• Also called: the publish-subscribe pattern

3/28/2018 CUNY | Brooklyn College 15

Publish-Subscribe Pattern

• Subject: a subset of Observables in the
model

• Subscriber: a subject’s observer

• In an application that has multiple views, we
often have multiple subjects

• Each describe a specify type of model change

• Each view can then subscribe only types of
changes that are relevant to the view

3/28/2018 CUNY | Brooklyn College 16

Realizing MVC: Passive Model

• Three (categories) of classes

• Controller class

• Model class

• View class

3/28/2018 CUNY | Brooklyn College 17

Model

Controller

View

Passive MVC: Dependency
Injection
• Interpret dependency as association

• Model class is independent completely

• No reference to either the Controller or the View class at
all

• View depends on Model

• The View class has instance variable that references to
Model

• Controller depends on both View and Model

• The Controller class has instance variables that reference
to the Model and the View, respectively

3/28/2018 CUNY | Brooklyn College 18

Passive MVC: Dependency
Injection
• Interpret dependency as a weaker dependency relationship than the

association

• Model class is independently completely

• No reference to either the Controller or the View class at all

• View depends on Model

• The View class may not have instance variable that references to Model

• A method of View has a parameter of the Model type (e.g., getData(Model m))

• Controller depends on both View and Model

• The Controller class may not have instance variables that reference to either
the Model or the View.

• It has methods that requires parameters of either the Model or the View
type, e.g., service(Model m), notifyUpdate(View v).

3/28/2018 CUNY | Brooklyn College 19

Active MVC: Publish-Subscribe

• Three (types) of classes: Model, View, and Controller

• Model has instance variables to observables (so the Model is
related to the Observer, via the platform)

• View and controller implements the Observer interface

3/28/2018 CUNY | Brooklyn College 20

Model

Controller

View

<<interface>>
Observer

+update()

Active MVC: Publish-Subscribe

• Observer pattern via JavaFX Properties

• Model

• Has instance variables references to subjects (JavaFX
properties, or classes that wrap JavaFX properties)

• View and Controller

• Has event listener either as instance method parameter or
instance variables to listen to changes in Model

• Controller

• Has references to model either as instance method
parameter or instance variables (for update model)

3/28/2018 CUNY | Brooklyn College 21

Computer Science Quotes App

• Model (or Application domain)

• A list of strings (computer science authors and what
they said)

• View

• The interface shows the quotes

• Controller

• Intercept users’ mouse clicks

• Inform model (or domain) about quote to display

• Inform view to update the quote to be displayed

3/28/2018 CUNY | Brooklyn College 22

Questions?

• Concept of Model-View-Controller pattern

• Concept of Publish-subscribe pattern

• Realization of MVC

• Dependency injection

• Observer pattern

3/28/2018 CUNY | Brooklyn College 23

Building View via FXML

• Help enforce the constraints imposed by the Model-
View-Controller pattern

• Separate application logic from user interface by
expressing user interface in XML

• Construct scene graph without writing code (in contrast to
constructing scene graphs in procedural code)

• Some consider it a convenient way to express View
in an XML file

• The hierarchical structure of an XML document closely
parallels the structure of the JavaFX scene graph.

• It has tool support (JavaFX Scene Builder)

3/28/2018 CUNY | Brooklyn College 24

Tool Support: Scene Builder

• JavaFX Scene Builder 2.0

• Oracle does not offer the binary any more

• Source code is distributed with the OpenJFX project

• Three options

• Download & install from a reputable 3rd party provider

• Down the source code, build it, and install it yourself

• (Not recommended) Download & install JavaFX Scene
Builder 1.x

3/28/2018 CUNY | Brooklyn College 25

Using Eclipse for JavaFX FXML
Project
• If from scratch

• Create a Maven project

• Plan, plan, plan, plan, plan, and plan …

• Create Controller class (always name it as a Controller)

• Use @FXML to annotate fields and methods (injecting dependency on View to the
Controller)

• Create FXML file (View)

• You can create it using the Scene Builder 2.0

• Specify controller for the view

• Create classes for your application logic (Model)

• Either passive or active MVC

• Follow the MVC pattern, and the guideline discussed

3/28/2018 CUNY | Brooklyn College 26

FXML: Overview

• Starting with

• <?xml version="1.0" encoding="UTF-8"?>

• Two major parts

• Import dependencies, e.g.,

• <?import javafx.scene.control.Button?>

• Scene graph starting from a root node, e.g.,

• <GridPane> … </GridPane>

• Insert nodes within the tag representing the root node

3/28/2018 CUNY | Brooklyn College 27

Specify Controller for FXML
View

• At attribute and value pair to the root
element of the scene graph

• fx:controller=“YourControllerClass”

• You may use fully qualified class name
(including package name)

3/28/2018 CUNY | Brooklyn College 28

Injecting Dependency via
@FXML Annotation
• Variable name in the Controller class must match the value of attribute “fx:id”, e.g.,

• In Controller

• @FXML

• TextField outputTextField

• In FXML View

• <TextField fx:id="outputTextField“>

• Event Handler method in the Controller class must also match value of the event
handler after prefixed with a “#” sign, e.g.,

• In Controller

• @FXML

• void processNumberKeys(ActionEvent event) { … }

• In FXML View

• <Button onAction="#processNumberKeys“>

3/28/2018 CUNY | Brooklyn College 29

Questions?

• Motivation and concept of FXML

• Big picture

• Tool to build FXML views

• A high-level guideline for a JavaFX FXML
application project

3/28/2018 CUNY | Brooklyn College 30

User Interface Design with
FXML

• FXML

• XML-based language

• XML = Extensible Markup Language

• Help build a user interface separated from
the application logic

3/28/2018 CUNY | Brooklyn College 31

Example: CS Quotes in JavaFX
with FXML

• Define the Model

• CsQuotesModel.java

• Define the View

• fxml_mainview.fxml

• Define the Controller

• CsQuotesController.java

3/28/2018 CUNY | Brooklyn College 32

Example: Instantiating the View
from FXML File
• Entry Point of the Application

private final static String APP_TITLE = "Quotations in Computer Science";

private final static String MAIN_VIEW_FXML = "fxml_mainview.fxml";

@Override

public void start(Stage primaryStage) throws IOException {

Pane mainPane =

(Pane)FXMLLoader.load(getClass().getResource(MAIN_VIEW_FXML));

Scene mainScene = new Scene(mainPane);

primaryStage.setTitle(APP_TITLE);

primaryStage.setScene(mainScene);

primaryStage.show();

}

3/28/2018 CUNY | Brooklyn College 33

Questions

• Express Views in FXML

• Example application

3/28/2018 CUNY | Brooklyn College 34

Skin JavaFX Application with
CSS
• Control appearance of JavaFX interface using Cascading Style Sheets

• Cascading Style Sheets (CSS)

• A World-Wide-Web Consortium (W3C) standard

• Originally designed as a simple mechanism for adding style (e.g., fonts, colors,
spacing) to Web documents

• See https://www.w3.org/Style/CSS/

• CSS level 1, 2, and 3 (some still under development)

• JavaFX CSS (JavaFX 8)

• Based on W3C CSS level 2.1 with some addition on current work on CSS level 3

• Aimed at providing a uniform method to style both desktop and web
applications

3/28/2018 CUNY | Brooklyn College 35

https://www.w3.org/Style/CSS/

An Example of JavaFX CSS

.root {

-fx-font-size: 16pt;

-fx-font-family: "Courier New";

-fx-base: rgb(132, 145, 47);

-fx-background: rgb(225, 228, 203);

-fx-background-image: url("background.jpg");

-fx-background-repeat: no-repeat;

-fx-background-size: cover;

}

3/28/2018 CUNY | Brooklyn College 36

Selector

Styles
in {}

A style is written as a
property and value
pair, and the property
name and its value is
separated by a “:”, and
ended with a “;”.

JavaFX property names are prefixed with a
vendor extension of "-fx-".

Apply Styles

• Styles are applied (but not necessarily selected for)
to Nodes in the Scene graph

• First applied to the parent, then to its children

• A node is styled after it is added to the scene
graph.

• A node is re-styled

• when the following changes made to the node's
pseudo-class state, style-class, id, inline style, or parent

• Pseudo-class state: e.g., MouseEvent.MOUSE_ENTERED

• When stylesheets are added to or removed from the
scene.

3/28/2018 CUNY | Brooklyn College 37

CSS Selectors

• CSS selectors are used to match styles to
scene-graph nodes

• Type selector

• Class selector

• ID selector

• Context selector

3/28/2018 CUNY | Brooklyn College 38

Type Selector

• Select based on type name returned by
Node’s getTypeSelector method

• Analogous to a CSS type selector

• See style and code example in

• CssDemoFX

3/28/2018 CUNY | Brooklyn College 39

Class Selector

• Select based on the value of the styleClass
property of the Node

• A Node can have multiple style classes

• Analogous to a CSS class selector

• See style and code example in

• CssDemoFX

3/28/2018 CUNY | Brooklyn College 40

ID Selector

• Select based on the ID of the Node

• The ID of a Node can be set using Node’s setId
method

• ID is should be unique

• Analogous to a CSS ID selector

• See style and code example in

• CssDemoFX

3/28/2018 CUNY | Brooklyn College 41

Context Selector

• Selection based on contextual information

• Example:

• #brooklyn-orange-next-quote Text { … }

• matches a Node whose type name is “Text” and
the Node is a descendent of the Node whose ID
is #brooklyn-orange-next-quote

• See CSS 3 Selectors for more

• https://www.w3.org/TR/css3-selectors/

3/28/2018 CUNY | Brooklyn College 42

https://www.w3.org/TR/css3-selectors/

Grow your skills & knowledge

• CISC 3620 Computer Graphics

• 2D and 3D graphics

• CISC 3320 Operating Systems

• Concurrency, processes, and threads

3/28/2018 CUNY | Brooklyn College 43

Assignments

• Practice

3/28/2018 CUNY | Brooklyn College 44

