CISC 3120
Cl6a: Model-View-Controller

and JavaFX Styling

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Outline

* Recap and issues

* Model-View-Controller pattern
* FXML and Scene Builder

» Styling user interface with CSS

* Brief introduction to graphics, media, and
charts

Applications: Data and View

« Many computer systems are to display data and update data in a data
store
« Two sets of terms

* Business logic: the modeling of the application domain (model, dataq,
business logic)

« User interfaces: the visual feedback to the users (view, presentation)

3/28/2018 CUNY | Brooklyn College

Need to Separate Concerns

 User interfaces often changes more frequently than business
logic

* Applications may display the same set of data differently

« User interface design and application logic design require
different skill sets

« User interface design and user interface development are two
different concepts

 User interface code tends to be more device-dependent than
business logic

 Create automatic tests for user interfaces is generally more
difficult and time-consuming than business logic

Model-View-Controller

e . Controller
Q 1
Model :
\/
A
e . View

3/28/2018 CUNY | Brooklyn College

Model-View-Controller

* It separates an application three separated
components/classes,

* (Model) the modeling of the application domain

* (View) the presentation,

* (Controller) and the actions based on user input
* A fundamental design pattern for the

separation of user interface from business
logic.

Model

* Model is independent of view and controller

» Manages the behavior and data of the
application domain

* Responds to requests for information about
its state (usually from the view)

* Responds to instructions to change state
(usually from the controller).

View

* Depends on model, but is independent of the
controller

* Manages the display of information.

Controller

 Depends on both model and view

* Interprets the mouse and keyboard inputs
from the user

» Inform the model and/or the view to change
as appropriate.

MVC Models

 Passive model
* Active model

Passive MVC Model

* One controller manipulates the model exclusively

« updates the model (data)

« inform the view that the model has changed and request
the view to refresh

handleEvent()
notifyUpdate() U R I

| ‘ getData() J
N U __________ data oL

3/28/2018 CUNY | Brooklyn College | 11

service()

Passive MVC Model: Discussion

* Model is passive
* Model is completely independent of View and Controller
* Model does not notify View or Controller any changes on it

* Controller is responsible for updating model, and for
requesting view to refresh

 Often realized via dependency injection
* Limitation

* If model can be updated from multiple controllers, the
view may be out-of-date

Active MVC Model

 Tntroduce an observer

__

e Controller
y \/ .
«interface>>
Model RN Observer :
+update() ¥
0 /\
] View

__

3/28/2018 CUNY | Brooklyn College

13

Model and View Interaction

 Separation of concerns: code/logic are
separated, but the objects interact

handleEvent() |

notifyObservers()
— |
< update() update() o
getData()
service() ‘ U‘--__-_______Sj_‘—‘ffg _____________ N

3/28/2018 CUNY | Brooklyn College

Active MVC Model Discussion

« Model is active
* Model may change state without controller's involvement
* eg., in particular, when two or more sources may result in model update
« How do we separate model from view when model is active?
* Model updates view

* Realized via the Observer pattern
* Model is an observable that notifies view or controller that is an observer
« The model never requires specific information about any views

+ Controller or model implements the Observer whenever necessary

* Also called: the publish-subscribe pattern

Publish-Subscribe Pattern

» Subject: a subset of Observables in the
model

» Subscriber: a subject’'s observer

* In an application that has multiple views, we
often have multiple subjects

» Each describe a specify type of model change

* Each view can then subscribe only types of
changes that are relevant to the view

Realizing MVC: Passive Model

* Three (categories) of classes
« Controller class

 Model class

* View class

CoTTTTTTITTT Controller
\I/ 1
Model .
\/
)
Tmmmmmee View

3/28/2018 CUNY | Brooklyn College

17

Passive MVC: Dependency
Injection

 Interpret dependency as association
* Model class is independent completely

* No reference to either the Controller or the View class at
all

* View depends on Model

 The View class has instance variable that references to
Model

* Controller depends on both View and Model

« The Controller class has instance variables that reference
to the Model and the View, respectively

Passive MVC: Dependency
Injection

Interpret dependency as a weaker dependency relationship than the
association

Model class is independently completely

* No reference to either the Controller or the View class at all

View depends on Model
« The View class may not have instance variable that references to Model

« A method of View has a parameter of the Model type (e.g., getData(Model m))

Controller depends on both View and Model

« The Controller class may not have instance variables that reference to either
the Model or the View.

* It has methods that requires parameters of either the Model or the View
type, e.g., service(Model m), notifyUpdate(View v).

Active MVC: Publish-Subscribe

« Three (types) of classes: Model, View, and Controller

* Model has instance variables to observables (so the Model is
related to the Observer, via the platform)

« View and controller implements the Observer interface

i mmm o Controller
v \/
«interface>> I
Model - - > Observer :'
+update() \/
/N /\
i I — View

3/28/2018 CUNY | Brooklyn College 20

Active MVC: Publish-Subscribe

« Observer pattern via JavaFX Properties
* Model

* Has instance variables references to subjects (JavaFX
properties, or classes that wrap JavaFX properties)

* View and Controller

 Has event listener either as instance method parameter or
instance variables to listen to changes in Model

e Controller

* Has references to model either as instance method
parameter or instance variables (for update model)

Computer Science Quotes App

* Model (or Application domain)

* A list of strings (computer science authors and what
they said)

* View

« The interface shows the quotes
* Controller

 Intercept users’ mouse clicks

* Inform model (or domain) about quote to display
* Inform view to update the quote to be displayed

Questions?

» Concept of Model-View-Controller pattern
» Concept of Publish-subscribe pattern
* Realization of MVC

 Dependency injection

« Observer pattern

Building View via FXML

* Help enforce the constraints imposed by the Model-
View-Controller pattern

* Separate application logic from user interface by
expressing user interface in XML

 Construct scene graph without writing code (in contrast to
constructing scene graphs in procedural code)

« Some consider it a convenient way to express View
inan XML file

* The hierarchical structure of an XML document closely
parallels the structure of the JavaFX scene graph.

* It has tool support (JavaFX Scene Builder)

Tool Support: Scene Builder

« JavaFX Scene Builder 2.0

* Oracle does not offer the binary any more
« Source code is distributed with the OpenJFX project

* Three options
 Download & install from a reputable 374 party provider
« Down the source code, build it, and install it yourself

* (Not recommended) Download & install JavaFX Scene
Builder 1.x

Using Eclipse for JavaFX FXML
Project

e If from scratch

* Create a Maven project

Plan, plan, plan, plan, plan, and plan ...

Create Controller class (always name it as a Controller)

Use @FXML to annotate fields and methods (injecting dependency on View to the
Controller)

Create FXML file (View)

You can create it using the Scene Builder 2.0

Specify controller for the view

Create classes for your application logic (Model)

Either passive or active MVC

* Follow the MVC pattern, and the guideline discussed

FXML: Overview

« Starting with

« <?2xml version="1.0" encoding="UTF-8"?>
* Two major parts

« Import dependencies, e.g.,

* <2import javafx.scene.control.Button?>

» Scene graph starting from a root node, e.q.,
* <GridPane> ... </GridPane>

 Insert nodes within the tag representing the root node

Specify Controller for FXML
View

* At attribute and value pair to the root
element of the scene graph

« fx:controller="YourControllerClass"

* You may use fully qualified class name
(including package name)

Injecting Dependency via
@FXML Annotation

 Variable name in the Controller class must match the value of attribute "fx:id", e.q.,

* In Controller

@FXML

TextField output TextField
« InFXML View

<TextField fx:id="outputTextField"s

« Event Handler method in the Controller class must also match value of the event
handler after prefixed with a "#" sign, e.q.,

* In Controller

@FXML

void processNumberKeys(ActionEvent event) { ... }
* InFXML View

<Button onAction="#processNumberKeys">

Questions?

* Motivation and concept of FXML
* Big picture
* Tool to build FXML views

* A high-level guideline for a JavaFX FXML
application project

User Interface Design with
FXML

* FXML

« XML-based language
« XML = Extensible Markup Language

» Help build a user interface separated from
the application logic

Example: CS Quotes in JavaFX
with FXML

» Define the Mode

« CsQuotesModel.java
* Define the View

« fxml_mainview.fxml

* Define the Controller

« CsQuotesController.java

Example: Instantiating the View
from FXML File

« Entry Point of the Application
private final static String APP_TITLE = "Quotations in Computer Science";
private final static String MAIN_VIEW_FXML = "fxml_mainview.fxml";
@Override
public void start(Stage primaryStage) throws IOException {
Pane mainPane =

(Pane)FXMLLoader.load(getClass().getResource(MAIN VIEW FXML));

Scene mainScene = new Scene(mainPane);
primaryStage.setTitle(APP_TITLE):
primaryStage.setScene(mainScene);

primaryStage.show():

Questions

 Express Views in FXML
» Example application

Skin JavaFX Application with
CSS

 Control appearance of JavaFX interface using Cascading Style Sheets

 Cascading Style Sheets (CSS)
« A World-Wide-Web Consortium (W3C) standard

* Originally designed as a simple mechanism for adding style (e.g., fonts, colors,
spacing) to Web documents

« See https://www.w3.0rg/Style/CSS/
« CSSlevel 1, 2, and 3 (some still under development)
« JavaFX CSS (JavaFX 8)
* Based on W3C CSS level 2.1 with some addition on current work on CSS level 3

« Aimed at providing a uniform method to style both desktop and web
applications

https://www.w3.org/Style/CSS/

An Example of JavaFX CSS

Selector

Styles
in {}

}

.root { A style is written as a

v fant_cive: .___— property and value
Px-font-size: l6pt: pair, and the property

-fx-font-family: "Courier New"; hame and its value is
| | separated by a ":", and
-fx-base: rgb(132, 145, 47), ended with a :".

-fx-background: rgb(225, 228, 203);
-fx-background-image: url("background.jpg"):
-fx-background-repeat: no-repeat;

-fx-background-size: cover;

1

|
JavaFX property names are prefixed with a

vendor extension of "-fx-".

Apply Styles

» Styles are applied (but not necessarily selected for)
to Nodes in the Scene graph

* First applied to the parent, then to its children

* A node is styled after it is added to the scene
graph.
* A node is re-styled

 when the following changes made to the node's
pseudo-class state, style-class, id, inline style, or parent

« Pseudo-class state: e.g., MouseEvent. MOUSE_ENTERED

* When stylesheets are added to or removed from the
scene.

CSS Selectors

« CSS selectors are used to match styles to
scene-graph nodes

 Type selector
* Class selector
« ID selector

e Context selector

Type Selector

» Select based on type name returned by
Node's getTypeSelector method

 Analogous to a CSS type selector

* See style and code example in
» CssDemoFX

Class Selector

» Select based on the value of the styleClass
property of the Node

* A Node can have multiple style classes
* Analogous to a CSS class selector

» See style and code example in
» CssDemoFX

ID Selector

« Select based on the ID of the Node

» The ID of a Node can be set using Node's setId
method

* ID is should be unique
 Analogous to a €SS ID selector

* See style and code example in
» CssDemoFX

Context Selector

« Selection based on contextual information
« Example:
« #brooklyn-orange-next-quote Text { ... }

* matches a Node whose type name is "Text" and
the Node is a descendent of the Node whose ID
is #brooklyn-orange-next-quote

» See CSS 3 Selectors for more

* https://www.w3.org/TR/css3-selectors/

https://www.w3.org/TR/css3-selectors/

Grow your skills & knowledge

« CISC 3620 Computer Graphics
2D and 3D graphics

» CISC 3320 Operating Systems

* Concurrency, processes, and threads

Assignments

* Practice

