
CISC 3120

C15: Dependencies,
Observables, Properties, and

Concurrency
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/21/2018 1CUNY | Brooklyn College

Outline

• Recap and issues

• Important problems

• Share data among components

• Design responsive user interface

• Dealing with dependency

• Passing data and objects among UI components

• Observer pattern

• Bindings and properties

• Concurrencies in JavaFX

3/21/2018 CUNY | Brooklyn College 2

Dependency

• An object depends on outside values (data)

• An object (the client) depends on the states and
behaviors of another object (the server)

• Example scenarios or applications?

• How do we handle it elegantly?

• Objective

• Changing the code of the server should not result in
the change of the code of client.

3/21/2018 CUNY | Brooklyn College 3

Dependency Injection

• How one object supplies the dependencies of
another object

• A few common techniques

• Not to use dependency injection

• Use dependency injection

• Via setter methods

• Via constructor methods

• Via inheritance (implementing interface or extending a
class)

3/21/2018 CUNY | Brooklyn College 4

Example App: Tracking
Student’s Grade

• Not to use dependency injection

• Use dependency injection

• Via setter methods

• Via constructor methods

• Via inheritance (implementing interface or
extending a class)

3/21/2018 CUNY | Brooklyn College 5

Dependency Injection:
Discussion
• Via constructors

• Can make sure dependencies are instantiated and valid from the outset;

• But cannot change the dependencies

• Via setters

• Can change the dependencies flexibly;

• However, cannot guarantee the setters are called (need to validate
dependencies state)

• Via interfaces

• A variation of the setters method with delayed setter implementation

• Flexible to delegate setters responsibilities to the dependencies themselves,
clients, or other objects

3/21/2018 CUNY | Brooklyn College 6

Frameworks and Loosely
Coupled Objects

• The examples are for illustrating the basic
concept

• How do we apply it to design applications with
loosely couple objects?

• Frameworks and containers

• Often comes with assemblers that instantiates and
wires the objects together

• You may do it yourself!

• Just to make sure to follow the principle

3/21/2018 CUNY | Brooklyn College 7

Working with JavaFX

• Adding “dependency”

• Not to use dependency injection

• Use dependency injection

• Via setter methods

• Via Node’s setUserData method

• Via Node’s getProperties method (what is a property? See properties &
bindings)

• Via constructor methods

• Via inheritance (implementing interface or extending a class)

• For User Interfaces, consider to create “View” classes

3/21/2018 CUNY | Brooklyn College 8

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#setUserData-java.lang.Object-
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#getProperties--

Questions?

• Concept of dependencies of objects

• Concept of dependency injections

• Dependency injection mechanisms

• Example applications

• In the Sample Programs repository

3/21/2018 CUNY | Brooklyn College 9

Changes and Dependencies

• When making changes to objects, make changes to the
clients (e.g., views) of the objects

• Dependency injection

• Pass messages to the clients/invoke clients’ methods directly

• Not always a good solution

• Why?

• Make changes to objects, and let clients update
themselves

• A good solution

• But, how do the clients know that the objects change?

3/21/2018 CUNY | Brooklyn College 10

Changes and Dependencies

• When making changes to objects, make changes to the
clients (e.g., views) of the objects

• Dependency injection

• Pass messages to the clients/invoke clients’ methods directly

• Not always a good solution, sometimes not even possible

• Why?

• Make changes to objects, and let clients update
themselves

• A good solution

• But, how do the clients know that the objects have changed?

3/21/2018 CUNY | Brooklyn College 11

The Observer Pattern

• One depends on other objects

• When one object changes, others also needs to change.

• Solution

• An observable object can have one ore observers, and
observers can be notified the changes the observable object

• An observable object is an object on which the clients depend on

• Often referred to as the “data” or “model”

• An observer object is the client that depends on the observable
object

• Often referred to as the “view”, in particular, in GUI applications

• Commonly used in the User Interface design

11/01/2017 CUNY | Brooklyn College 12

Java Observable and Observer

• Java supports the observer pattern

• It has the Observable class and the Observer interface

• java.util.Observable

• java.util.Observer

• An Observable object can have one or more “observers”

• An application (1) the Observable’s addObserver method to add
an observer to the Observable, and (2) calls the Observable’s
notifyObservers method

• Each observer must implements the Observer interface

• The platform calls the Observer’s update method when the
observer is notified of a change of the Observable

3/21/2018 CUNY | Brooklyn College 13

https://docs.oracle.com/javase/8/docs/api/java/util/Observable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Observer.html
https://docs.oracle.com/javase/8/docs/api/java/util/Observable.html#addObserver-java.util.Observer-
https://docs.oracle.com/javase/8/docs/api/java/util/Observable.html#notifyObservers-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/util/Observer.html#update-java.util.Observable-java.lang.Object-

Using the Observable and
Observer
• Preparing an Observable

• Extending the Observable class

• Invokes the Observable’s setChanged() and notifyObservers(…) methods

• Add observers to the Observable

• Invokes the Observable’s addObserver(…) method

• Preparing an Observer

• Creating an object of the Observable

• An Observer object typically has one or more Observable objects to observe

• Implementing the Observer interface

• Override the Observer’s update(…) method

3/21/2018 CUNY | Brooklyn College 14

Questions

• The Observer pattern

• Commonly seen in User Interface development

• The Java Observable and Observer classes

• Example application

• In the Sample Programs repository

3/21/2018 CUNY | Brooklyn College 15

Dependency and UI Component

• UI components need to response to changes of
depended objects

• What are the solutions?

• Dependency injection

• Observables and Observers

• Problem

• In even-driven GUI applications, how do we update UI
components when depended objects change in event-driven
fashion?

• The discussion also applies to non-UI components

3/21/2018 CUNY | Brooklyn College 16

JavaFX Properties and Bindings

• JavaFX Properties are JavaFX objects and
APIs

• that realize the Observer pattern

• that follow event-driven programming paradigm

3/21/2018 CUNY | Brooklyn College 17

JavaFX Properties

• JavaFX properties are observable objects in
event-driven programming

• Observable notifies observers via events

• Observer listens to and handles events
triggered by the changes of the properties
objects

3/21/2018 CUNY | Brooklyn College 18

JavaFX Property

• An interface

• javafx.beans.property

• Typically, use one of many concrete implementing classes

• A property object can have a list of listeners to listen to
two types of events

• Via ObservableValue’s addListener(…) and Observable’s
addListener(…) methods

• Two types of listeners

• ChangeListener

• InvaliadtionListener

3/21/2018 CUNY | Brooklyn College 19

https://docs.oracle.com/javase/8/javafx/api/javafx/beans/property/Property.html
https://docs.oracle.com/javase/8/javafx/api/javafx/beans/value/ObservableValue.html#addListener-javafx.beans.value.ChangeListener-
https://docs.oracle.com/javase/8/javafx/api/javafx/beans/Observable.html#addListener-javafx.beans.InvalidationListener-
https://docs.oracle.com/javase/8/javafx/api/javafx/beans/value/ChangeListener.html
https://docs.oracle.com/javase/8/javafx/api/javafx/beans/InvalidationListener.html

ChangeListener or
InvalidationListener?

• Examine the definition of the interfaces

• “eager evaluation” and “lazy evaluation”?

3/21/2018 CUNY | Brooklyn College 20

Questions

• Concept JavaFX properties

• Relationship with the Observer pattern and
dependency injection

• Event handling for JavaFX properties

• Example application

• In the Sample Programs repository

3/21/2018 CUNY | Brooklyn College 21

JavaFX Bindings

• A Binding calculates a value that depends on one or more sources.

• The sources are usually called the dependency of a binding.

• A binding observes its dependencies for changes and updates its value
automatically.

• A convenient mechanism

• to express direct (dependency) relationships between objects

• to define how changes made to one object is “automatically” reflected in
another object

• Realized using JavaFX Properties, Observables, ObservableValues

• High-level binding API (Simple bindings)

• Low-level binding API

3/21/2018 CUNY | Brooklyn College 22

Simple Bindings

• Property objects has methods that “bind” a property to
another

• Also referred to Fluent API

• Fluent: using method chaining, the method calls resemble a “prose” in a natural
language.

• Unidirectional binding, bidirectional binding

• Bindings (java.beans.binding.Bindings) has static factory
methods that create simple bindings

• What they do?

• Create a binding between sources

• Bind the binding to a property (that serves as an observer to the
binding)

3/21/2018 CUNY | Brooklyn College 23

https://docs.oracle.com/javase/8/javafx/api/javafx/beans/binding/Bindings.html

Low-Level Binding APIs

• Generally, extending one of the Binding classes

• javafx.beans.binding

• BooleanBinding, DoubleBinding, FloatBinding, IntegerBinding, ListBinding,
LongBinding, MapBinding, ObjectBinding, SetBinding, StringBinding

• Call the superclass’s bind(…) method in the subclass’s constructor

• Override the computerValue(…) method

• See the description and examples in the DoubleBinding class

• Note:

• All bindings in the JavaFX runtime are calculated lazily.

• Calling binding’s get() method results the calculation of the binding

3/21/2018 CUNY | Brooklyn College 24

https://docs.oracle.com/javase/8/javafx/api/javafx/beans/binding/Binding.html
https://docs.oracle.com/javase/8/javafx/api/javafx/beans/binding/DoubleBinding.html

Questions

• Concept of bindings

• Bindings in JavaFX components

• Example application

• In the Sample Programs repository

3/21/2018 CUNY | Brooklyn College 25

Concurrency and JavaFX

• Concurrency

• Two or more methods are running simultaneously

• Each is often referred to as a “thread”.

• JavaFX platform runs a “method” to manage UI components, such as,
a scene graph

• JavaFX “UI thread”, or JavaFX “Application thread”

• Scene graphs are accessed and modified sequentially in the “Application
thread”

• Time consuming methods can make UI nonresponsive

• Design for responsiveness

• delegating time-consuming method (task) execution to background threads

• utilizing the javafx.concurrent package

3/21/2018 CUNY | Brooklyn College 26

https://docs.oracle.com/javase/8/javafx/api/javafx/concurrent/package-summary.html

Motivational Examples

• Design consideration

• event handlers should return quickly, since they are
invoked in an event loop

• What if we have lots of work to do when an
event occurs?

• Two applications

• Implementing a Monte Carlo simulation to estimate .

• The simulation can take a while to run.

3/21/2018 CUNY | Brooklyn College 27

The Worker Interface

• Worker

• An object which performs some work in one or more background threads

• It is an observable object

• The observers can be the JavaFX Application thread.

• WorkStateEvent

• An event which occurs whenever the state changes on a Worker.

3/21/2018 CUNY | Brooklyn College 28

interface
Worker

TaskService

ScheduledService

Worker States

• Worker.State

3/21/2018 CUNY | Brooklyn College 29

READY

SCHEDULED

RUNNING

SUCCEDDED

FAILED

new

Completes
successfully

Failed

start
CANCELED

Cancel

Worker Progress

• Work has three different properties,
totalWork, workDone, and progress.

• User’s implementation sets the values of the
properties

• User’s implementation should ensure to stop
processing when the worker is canceled

3/21/2018 CUNY | Brooklyn College 30

Task and Service

• Three classes:

• javafx.concurrent.Task, javafx.concurrent.Service,
javafx.concurrent.ScheduledService

• An instance of Task is a one-short worker

• Create once, run once, and cannot be reused

• A Service creates and manages a Task that performs
the work on the background thread.

• A ScheduledService is a Service

• which will automatically restart itself after a successful
execution,

• and under some conditions will restart even in case of failure.

3/21/2018 CUNY | Brooklyn College 31

Working Examples

• Estimating PI using Monte Carlo simulations

• The simulations are long-running

• How to make the program responsive?

3/21/2018 CUNY | Brooklyn College 32

Questions

• JavaFX concurrency

• JavaFX workers, tasks, and services

• JavaFX concurrency and responsive UI
design

• Example application

• In the Sample Programs repository

3/21/2018 CUNY | Brooklyn College 33

More Questions

• Dependencies and design

• Observer pattern and design

• Properties and bindings

• Concurrency, workers, tasks, and services

• More importantly

• Present a few important problems in (non-trivial)
application design

• What are your solutions to the problems?

3/21/2018 CUNY | Brooklyn College 34

Assignment

• Practice Assignments

• Mandatory and bonus

3/21/2018 CUNY | Brooklyn College 35

