CISC 3120
C15: Dependencies,

Observables, Properties, and

Concurrency
Hui Chen

Department of Computer & Information Science
CUNY Brooklyn College



Outline

* Recap and issues

« Important problems
* Share data among components
* Design responsive user interface

* Dealing with dependency
* Passing data and objects among UT components

« Observer pattern
* Bindings and properties
« Concurrencies in JavaFX



Dependency

* An object depends on outside values (data)

« An object (the client) depends on the states and
behaviors of another object (the server)

» Example scenarios or applications?
* How do we handle it elegantly?
» Objective

 Changing the code of the server should not result in
the change of the code of client.



Dependency Injection

* How one object supplies the dependencies of
another object

« A few common techniques
 Not to use dependency injection
 Use dependency injection

* Via setter methods

« Via constructor methods

* Via inheritance (implementing interface or extending a
class)



Example App: Tracking
Student's Grade

* Not to use dependency injection

 Use dependency injection
* Via setter methods
* Via constructor methods

» Via inheritance (implementing interface or
extending a class)



Dependency Injection:
Discussion

 Via constructors
* Can make sure dependencies are instantiated and valid from the outset;

* But cannot change the dependencies

 Via setters
* Can change the dependencies flexibly;

« However, cannot guarantee the setters are called (need to validate
dependencies state)

« Via interfaces

* A variation of the setters method with delayed setter implementation

 Flexible to delegate setters responsibilities to the dependencies themselves,
clients, or other objects



Frameworks and Loosely
Coupled Objects

* The examples are for illustrating the basic
concept

* How do we apply it to design applications with
loosely couple objects?

 Frameworks and containers

« Often comes with assemblers that instantiates and
wires the objects together

* You may do it yourself!
 Just to make sure to follow the principle



Working with JavaFX

« Adding "dependency”
* Not to use dependency injection

 Use dependency injection

* Via setter methods
* Via Node's setUserData method

 Via Node's getProperties method (what is a property? See properties &
bindings)

* Via constructor methods

 Via inheritance (implementing interface or extending a class)

* For User Interfaces, consider to create "View" classes


https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#setUserData-java.lang.Object-
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#getProperties--

Questions?

» Concept of dependencies of objects
» Concept of dependency injections
 Dependency injection mechanisms

» Example applications

* In the Sample Programs repository



Changes and Dependencies

« When making changes to objects, make changes to the
clients (e.g., views) of the objects

 Dependency injection
* Pass messages to the clients/invoke clients' methods directly
 Not always a good solution

* Why?

* Make changes to objects, and let clients update
themselves

* A good solution
 But, how do the clients know that the objects change?



Changes and Dependencies

« When making changes to objects, make changes to the
clients (e.g., views) of the objects

 Dependency injection
* Pass messages to the clients/invoke clients' methods directly
* Not always a good solution, sometimes not even possible

* Why?

* Make changes to objects, and let clients update
themselves

* A good solution
 But, how do the clients know that the objects have changed?



The Observer Pattern

* One depends on other objects
* When one object changes, others also needs to change.

« Solution

 An observable object can have one ore observers, and
observers can be notified the changes the observable object

« An observable object is an object on which the clients depend on
« Often referred to as the "data” or "model”

« An observer object is the client that depends on the observable
object

« Oftenreferred to as the "view", in particular, in GUT applications

« Commonly used in the User Interface design



Java Observable and Observer

« Java supports the observer pattern
« It has the Observable class and the Observer interface

- java.util.Observable

e java.util.Observer

« An Observable object can have one or more "observers"”

 An application (1) the Observable's addObserver method to add
an observer to the Observable, and (2) calls the Observable's
notifyObservers method

 Each observer must implements the Observer interface

* The platform calls the Observer's update method when the
observer is notified of a change of the Observable


https://docs.oracle.com/javase/8/docs/api/java/util/Observable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Observer.html
https://docs.oracle.com/javase/8/docs/api/java/util/Observable.html#addObserver-java.util.Observer-
https://docs.oracle.com/javase/8/docs/api/java/util/Observable.html#notifyObservers-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/util/Observer.html#update-java.util.Observable-java.lang.Object-

Using the Observable and
Observer

* Preparing an Observable

« Extending the Observable class
* Invokes the Observable's setChanged() and notifyObservers(...) methods

« Add observers to the Observable
« Invokes the Observable's addObserver(...) method
* Preparing an Observer
* Creating an object of the Observable

* An Observer object typically has one or more Observable objects to observe
« Implementing the Observer interface
* Override the Observer's update(...) method



Questions

* The Observer pattern

« Commonly seen in User Interface development
 The Java Observable and Observer classes

» Example application

* In the Sample Programs repository



Dependency and UL Component

» UL components need to response to changes of
depended objects

* What are the solutions?

« Dependency injection

« Observables and Observers
* Problem

* Ineven-driven GUT applications, how do we update UI
components when depended objects change in event-driven
fashion?

 The discussion also applies to non-UL components




JavaF X Properties and Bindings

» JavaFX Properties are JavaFX objects and
APIs

* that realize the Observer pattern

* that follow event-driven programming paradigm



JavaFX Properties

« JavaFX properties are observable objects in
event-driven programming

« Observable notifies observers via events

 Observer listens to and handles events
triggered by the changes of the properties
objects



JavaFX Property

 An interface
- javafx.beans.property
« Typically, use one of many concrete implementing classes

A property object can have a list of listeners to listen to
two types of events

* Via ObservableValue's addListener(...) and Observable's
addListener(...) methods

« Two types of listeners

 Changelistener

e InvaliadtionListener

3/21/2018 CUNY | Brooklyn College 19


https://docs.oracle.com/javase/8/javafx/api/javafx/beans/property/Property.html
https://docs.oracle.com/javase/8/javafx/api/javafx/beans/value/ObservableValue.html#addListener-javafx.beans.value.ChangeListener-
https://docs.oracle.com/javase/8/javafx/api/javafx/beans/Observable.html#addListener-javafx.beans.InvalidationListener-
https://docs.oracle.com/javase/8/javafx/api/javafx/beans/value/ChangeListener.html
https://docs.oracle.com/javase/8/javafx/api/javafx/beans/InvalidationListener.html

Changel.istener or
InvalidationListener?

» Examine the definition of the interfaces

» "eager evaluation” and “lazy evaluation"?



Questions

» Concept JavaFX properties

* Relationship with the Observer pattern and
dependency injection

» Event handling for JavaFX properties
» Example application

* In the Sample Programs repository



JavaF X Bindings

A Binding calculates a value that depends on one or more sources.
« The sources are usually called the dependency of a binding.

« A binding observes its dependencies for changes and updates its value
automatically.

A convenient mechanism
 to express direct (dependency) relationships between objects

« to define how changes made to one object is "automatically” reflected in
another object

Realized using JavaFX Properties, Observables, ObservableValues
High-level binding APT (Simple bindings)
Low-level binding APT



Simple Bindings

* Property objects has methods that "bind" a property to
another

« Also referred to Fluent APT

* Fluent: using method chaining, the method calls resemble a "prose” in a natural
language.

* Unidirectional binding, bidirectional binding

* Bindings (java.beans.binding.Bindings) has static factory
methods that create simple bindings

* What they do?

* Create a binding between sources

 Bind the binding to a property (that serves as an observer to the
binding)


https://docs.oracle.com/javase/8/javafx/api/javafx/beans/binding/Bindings.html

Low-Level Binding APIs

* Generally, extending one of the Binding classes

- javafx.beans.binding

* BooleanBinding, DoubleBinding, FloatBinding, IntegerBinding, ListBinding,
LongBinding, MapBinding, ObjectBinding, SetBinding, StringBinding

* Call the superclass’s bind(...) method in the subclass's constructor
« Override the computerValue(...) method
 See the description and examples in the DoubleBinding class

* Note:

* All bindings in the JavaFX runtime are calculated lazily.

* Calling binding's get() method results the calculation of the binding


https://docs.oracle.com/javase/8/javafx/api/javafx/beans/binding/Binding.html
https://docs.oracle.com/javase/8/javafx/api/javafx/beans/binding/DoubleBinding.html

Questions

» Concept of bindings
* Bindings in JavaFX components
» Example application

* In the Sample Programs repository



Concurrency and JavaFX

« Concurrency
« Two or more methods are running simultaneously

Each is often referred to as a "thread".

« JavaFX platform runs a "method” to manage UT components, such as,
a scene graph

« JavaFX "UI thread”, or JavaFX "Application thread”

« Scene graphs are accessed and modified sequentially in the "Application
thread”

« Time consuming methods can make UI nonresponsive
* Design for responsiveness

* delegating tfime-consuming method (task) execution to background threads

« utilizing the javafx.concurrent package



https://docs.oracle.com/javase/8/javafx/api/javafx/concurrent/package-summary.html

Motivational Examples

* Design consideration

« event handlers should return quickly, since they are
invoked in an event loop

« What if we have lots of work to do when an
event occurs?

« Two applications

* Implementing a Monte Carlo simulation to estimate .

« The simulation can take a while to run.



The Worker Interface

 Worker

* Anobject which performs some work in one or more background threads

« It is an observable object

« The observers can be the JavaFX Application thread.
« WorkStateEvent

3/21/2018 CUNY | Brooklyn College

interface
Worjker'

Selfvice Task

A

ScheduledService

28



Worker States

 Worker.State

Completes

successﬁﬂN

new

iled

Cancel

3/21/2018 CUNY | Brooklyn College



Worker Progress

* Work has three different properties,
totalWork, workDone, and progress.

» User's implementation sets the values of the
properties

» User's implementation should ensure to stop
processing when the worker is canceled



Task and Service

Three classes:

* javafx.concurrent.Task, javafx.concurrent.Service,
javafx.concurrent.ScheduledService

An instance of Task is a one-short worker

« Create once, run once, and cannot be reused

A Service creates and manages a Task that performs
the work on the background thread.

A ScheduledService is a Service

* which will automatically restart itself after a successful
execution,

« and under some conditions will restart even in case of failure.



Working Examples

* Estimating PI using Monte Carlo simulations
 The simulations are long-running

« How to make the program responsive?



Questions

» JavaFX concurrency
« JavaFX workers, tasks, and services

 JavaFX concurrency and responsive UI
design

» Example application

* In the Sample Programs repository



More Questions

* Dependencies and design

« Observer pattern and design

* Properties and bindings

« Concurrency, workers, tasks, and services
* More importantly

* Present a few important problems in (non-trivial)
application design

* What are your solutions to the problems?



Assignment

* Practice Assignments

* Mandatory and bonus



