CISC 3120
C12: JavaFX Scene Graph,

Events, and UI Components

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Outline

* Recap and issues
« JavaFX build-in UI elements

« Simple event registration and handler

* Assignments

Recap and Issues

* Projects
* Project 142
* Upcoming project: project 3
« GUI application
* Midterm Review

* Review guides and take-home tests
« GUI and Overview of JavaFX

Lessons from Project 1

 Java haming convention

* How should you name constants and variables?

* How objects should interact with each other?
* Reduce maintenance difficulty

* Using literals

* Named constants are better

 Divide-and-conquer: writing methods and classes
* Bottom-up and top-down approaches

« When unclear, write few, run/test often

 Consider how each part interacts with each other

Naming Constants and Variables

* Which one of the two should you write
according to the Java coding convention?

final static int GAME_BOARD_WIDTH = 80;

final static int gameBoardWidth = 80;

* Which one of the two should you write?
int GAME_BOARD_WIDTH = 80;

int gameBoardWidth = 80;

Naming Constants

* Which one of the two should you write
according to the Java coding convention?

final static int GAME_BOARD_WIDTH = 80;

final static int gameBoardWidth = 80;

* Which one of the two should you write?
int GAME_BOARD_WIDTH = 80; x

int gameBoardWidth = 80; V

3/12/2018 CUNY | Brooklyn College

Using Literals

« Which one is easier to understand when you
read?

if (humGuesses < 10) {

-

final static int MAX_ALLOWED_GUESSES = 10;

if (humGuesses < MAX_ALLOWED_GUESSES) {

Divide-and-Conquer: Writing

Methods

 Which one is easier to read and code?

public class TreasureHuntGameConsoleApp
{
public static void main(String[] args) {

CommandLineParser parser = new DefaultParser();
int gameWidth = 80, gameHeight = 25, gamelLevel = O;
Options options=new Options();
options.addOption("w","width", true "width parameter");
options.addOption("h","height", true "height parameter");
options.addOption("l" "level", true,"level parameter");

try {
CommandLine line = parser.parse(options, args):
if(I(line.getOptionValue("w")==null))
w = line.getOptionValue("w");
gameWidth = Integer.parseInt(w);
} ca‘rc.P;"('Par‘seExcep‘rion exp) {
}
GameController controller =
new
GameController(gameWidth,gameHeight,gamelevel);
controller.runTheGame();
}
}

public class TreasureHuntGameConsoleApp

{

public static void main(String[] args) {
parseGameOptions(args):
GameController controller =
new
GameController(gameWidth,gameHeight,gamelevel);
controller.runTheGame(); }

private static void parseGameOptions(String[] args){ ...

private static int gameWidth;
private static int gameHeight;
private static int gamelevel;

}

Questions?

* Lessons from Project 1

 Java naming convention, using constants, method
invocation, divide-and-conquer, and bottom-
up/top-down

"Programs must be written for people to read, and only
incidentally for machines to execute.”

-- H. Abelson and 6. Sussman (in "The Structure and
Interpretation of Computer Programs")

3/12/2018 CUNY | Brooklyn College

Java API Documentation

* Class documentation * Properties
+ Package hierarchy Public instance variables
« Class name * Fields
+ Implemented interfaces ' igggfaﬁléss variables and
« Known subclasses . Constructors
* Class declaration line . Methods
« Abstract or concrete + Method summary
* Super class « Methods inherited

* Description Property detail

« Compatibility

ava API Documentation

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES
SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAIL: FIELD | CONSTR | METHOD

javafx.scene

Class Node

java.lang.Object

javafx.scene.Node

All Implemented Interfaces:

Styleable, EventTarget

Direct Known Subclasses:

Camera, Canvas, ImageView, LightBase, MediaView, Parent, Shape, Shape3D, SubScene, SwingNode

@IDProperty(value="id")

public abstract class Node
extends Object

implements EventTarget, Styleable

Base class for scene graph nodes. A scene graph is a set of tree data structures where every item has zero or one p
sub-items.

Since:

JavaFX 2.0

Property Summary

CURIELETEE] Instance Methods | Concrete Methods

Type Property and Description

ObjectProperty<String> accessibleHelp
The accessible help text for this Node.

3/12/2018 CUNY | Brooklyn College

11

Questions?

* How to consult API documentation?

JavaFX GUI Application

* Learn to write JavaFX application
* Learn new ones from existing knowledge and skills
* Learn to use Java APT documentation
* Learn a few concepts in GUI and computer graphics

« JavaFX application life cycle

« JavaFX application structure

« JavaF X event processing
 JavaFX build-in UT components

JavaFX Application

« JavaFX platform is the environment where
JavaFX applications run

» javafx.application.Platform: Application platform
support class

* Control & query platforms: e.qg., accessibility, implicit
exit

* Entry point: the Application class

» javafx.application.Application

« abstract void start(Stage primaryStage)

3/12/2018 CUNY | Brooklyn College 14

https://docs.oracle.com/javase/8/javafx/api/javafx/application/Platform.html
https://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.html

JavaFX Application Life-Cycle

« JavaFX runtime does the following, in order,

Constructs an object of the specified Application class (via the
launch(String[] args) method), with regard to the Application object:

Calls the init() method that can be overridden

Calls the start(javafx.stage.Stage) method that must be overridden
in subclass)

Waits for the application to finish, which happens when either of the
following occur:

« the application calls Platform.exit()

+ the last window has been closed and the implicitExit attribute on Platform is
true

Calls the stop() method (can be overridden)

JavaFX Application: Remarks

 The start(javafx.stage.Stage) is an abstract method,
and must be overridden in the subclass

 The init() and stop() method have concrete
implementations, but do nothing, and can be overridden.

 Explicitly tferminating JavaFX application
* calling Platform.exit() is the preferred method

* Calling System.exit(int) is acceptable, but the stop() method
will not run.

« JavaFX should not and cannot be used after
System.ext(int) is called or the stop() is returned.

Questions?

» JavaFX Platform and Application

* Main agenda when developing JavaFX
applications

Stage and Scene

“All the world's a stage, and all the men and women merely
players.”

-- As You Like It, Act IT, Scene VII, William Shakespeare

3/12/2018 CUNY | Brooklyn College 18

JavaFX Stage

* Top level JavaFX container

* Can have a Scene

 Associated with a Window
* Primary Stage

* First Stage constructed by the Platform
 Additional Stage

* Constructed by the application

Stage Style

» A stage can be one of a few styles

* StageSty
« StageSty

« StageSty
StageSty

e.DECORATED
e.UNDECORATED

e. TRANSPARENT
e UTILITY

Stage Modality

* Modality. NONE
* Modality. WINDOW_MODAL
* Modality. APPLICATION_MODAL

JavaFX Scene

* Represent visual elements of user interface.

* Elements can be displayed inside a window (on a
Stage)

 Scene graph

* The elements form a graph called a scene graph

* Handles input via its elements

* Can be rendered.

Scene Graph

 Elements organized as a hierarchical structure, like a tree (a
tree is a graph)

A graph is understood as a collection of nodes (or vertices), and
edges (representing some connection or association)

* An element in a scene graph is called a node.

« Each non-root node has a single parent.

* Each node has zero or more children. Root Node
‘V\
Node Node | ... Node

—
Node Node

Node in Scene Graph

« Example nodes

* a layout container, a group, a shape, a button ...

 Each node has an ID, style class, bounding volume, and
other attributes

Effects, such as blurs and shadows

Opacity

Transforms

Event handlers (such as mouse, key and input method)

An application-specific state

« javafx.scene.Node: abstract class

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html

Building Scene Graph

* Create a root Node
* Add children Nodes to root Node
* Register event handlers

* Set it ona Stage

Write the First JavaFX
Application from Scratch

 Create a concrete subclass extending the JavaFX
Application class (javafx.application.Application)

* (Curtains down) Construct a scene graph containing a
tree of nodes

« The simplest tree contains a single root node (select a
concrete subclass of nodes)

e http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.ht
mi

* Register some events to handle
» Set scene for the stage
* (Curtains up) Show the scene

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html

Questions

» JavaF X Stage
» JavaFX Scene
 Simple JavaFX application

Building Scene Graph

Packaged in javafx.scene

Nodes (elements)

« Examples: text, charts, containers, shapes (2-D and 3-D), images,
media, embedded web browser, and groups

Transforms

* e.g., positioning and orientation of nodes

Effects

* Visual effects (algorithm resulting in an image)

« Objects that change the appearance of scene graph nodes, such as
blurs, shadows, and color adjustment

A scene graph must have a root node

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/package-summary.html

Scene Graph Root Node

* Must a concrete subclass of javafx.scene.Parent

* Can be a Group or a Region object
« Group

« effects and transforms to be applied to a collection of
child nodes.

* Region

* class for nodes that can be styled with €SS and layout
children.

* Layouts and Controls

3/12/2018 CUNY | Brooklyn College 29

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Parent.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/effect/Effect.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/transform/Transform.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/package-summary.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/package-summary.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/control/Control.html

Layouts and Controls

» Layouts
* Classes support user interface layout

« Examples: horizontal layout, vertical layout, grid layout, back-to-
front

e Controls

A node in the scene graph that can be manipulated by the
user

* Labeled: buttons, labels, text fields, toggle button, checkbox,
menu button, ...

* List view, combo box, menu bar, scroll bar, progress indicator,
spinner, slider, ...

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/package-summary.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/control/Control.html

Questions?

« Stage and Scene
» Scene graph

 GUT windows and Scene node

Building a JavaFX Application
with Stage and Scene: Example

» Can we have multiple scenes?
* How do we improve readability?
« Use named constants

 Can we add more children to a scene graph?

» Can we have multiple stages (windows)?

Group Group

} I

Rectangle Circle

Questions?

« JavaFX scene graph

* Procedure to build a scene graph

* Review the example JavaFX applications
* Suggestion

« Consult API documentation often

Events

* Representing occurrence of something of the
application’s interest

 Mouse events

* Mouse pressed, mouse released, mouse clicked (pressed &
released), mouse moved, mouse entered, mouse exited,
mouse dragged

+ Keyboard event
* Key pressed, key released, key typed (pressed & released)

« Gesture event, touch event, ...

JavaFX Events

« javafx.event.Event

* An event is an object of the Event class or any
subclass of the Event class

* An event travels along a path called an event
dispatcher chain

* Typically, the path consists of objects of various
Nodes, Stage, and Scene

* There are many types of events

https://docs.oracle.com/javase/8/javafx/api/javafx/event/Event.html

JavaFX Event Type

» javafx.event.EventType: specific event type

associated with an Event

 Event types forms a hierarchy

Event. ANY —

KeyEvent.KEY_PRESSED

KeyEvent.KEY_RELEASED

~| InputEvent ANY KeyEvent ANY {

~| ActionEvent. ACTION _| MouseEvent ANY

KeyEvent.KEY_TYPED

MouseEvent. MOUSE_PRESSED

3/12/2018

MouseEvent. MOUSE_RELEASED

WindowEvent. WINDOW_SHOWN

_IthﬂwEvmt.MY HMMEmm.wmmwsmwma

CUNY | Brooklyn College

36

https://docs.oracle.com/javase/8/javafx/api/javafx/event/EventType.html

Event Dispatcher Chain

A path of nodes along which an event object is passed

« Event source

« where (an object) an event is originated. The source changes as the event
is passed along the chain

« Event target

 anode where the action occurred and the end node of the dispatcher
chain. The target does not change.

A 4
A 4
A 4

3/12/2018 CUNY | Brooklyn College 37

Passing Event

* Passing an Event object along the dispatcher chain

« The source changes as it travels

« The target remains the same

A 4

Y

0106

Source New Source

\ 4

Target

time

3/12/2018 CUNY | Brooklyn College

38

Event Capturing and Bubbling

 Undisturbed, an event is passed/travels in a two-

way "round trip"
* Capturing: source to target

 Bubbling: target to source

Capturing e New
Source Source

Bubbling @
New
Source

3/12/2018 CUNY | Brooklyn College

BT APGET -

Source

39

Event Handling

» Event handling via EventFilter and
EventHandler

« Add one or more EventFilter at each node
» Invoked during the capturing phase

« Add one or more EventHandler at each node
» Invoked during the bubbling phase

Event Capturing and Bubbling:
Example

* An implementation of the example in the
Oracle’'s JavaFX tutorial

g
J “ 2

Circle | Triangle

Event Delivery Process

* Target selection

* Route construction
* Event capturing

» Event bubbling

Target Selection

 When an action occurs, JavaFX determines which node is the
target based on internal rules

« Examples:

Key events: the target is the node that has focus.

Mouse events: the node at the location of the cursor.

Gesture events: the node at the center point of all touches at the

beginning of the gesture; or the node at the location of the cursor.

« Swipe events: the node at the center of the entire path of all of the fingers;
or or the node at the location of the cursor.

Touch events: the node at the location first pressed.

If more than one node is located at the cursor or touch, the topmost
node is considered the target.

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/input/KeyEvent.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/input/MouseEvent.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/input/GestureEvent.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/input/SwipeEvent.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/input/TouchEvent.html

Route Construction

« Selected event target determine the initial
dispatch chain

* It implements the buildEventDisptachChain(...)
method in the EventTarget interface

* The implementation of the method determines
the initial chain

Consume Events

e Events can be consumed

 Stop passing the event to next node along the event
dispatcher chain in either direction

* event capturing
- event bubbling
« Inan event filter
« Stops capturing
* Inan event handler
« Stops bubbling

Question?

« JavaFX event handling

* Event dispatcher chain

« Event source, event target, event capturing phase,
event bubbling phase

* Default/initial event dispatcher chain
constructed by Nodes

» Event handling
« event handlers and event filters

e Events can be consumed

Basic Event Handling

* Register event handlers at nodes
* Response to

* mouse events, keyboard events, action events, drag-
and-drop events, window events, and others.

« Commonly via the convenience methods provided
by the target nodes

« setOnMouseClicked, setOnMouseEntered,
seOnMouseExited ...

* Naming convention: setOnEvent-type

Basic Event Handling: Examples

» Example programs in the Sample Programs
repository

Questions

* Basic event handling

« Examples

Write Larger JavaFX

Applications
* Now, ready to engage in writing slightly
larger applications in JavaFX
A few essential concepts
« Window & node coordinates, colors

« Use JavaFX build-in user interface
components

* Design user interface and example
application

GUI Windows

tiths min/man button olhse button

csize] N
 Shape

* Title

. Tcon Typieal MS Wirdows

* Modality Widoo

. Visibility |

3/12/2018 CUNY | Brooklyn College 51

Scene Node Coordinate System

* A traditional computer graphics "local”
coordinate system (javafx.scene.node)

(00) = E
Hight

A E horizontal =~ helpht
:.' /0&/'5/0/(A~ width s

—t

Color Space

* Color is a human perception
* (Mathematical) models for color are developed

* Including a model for human perceptual color space

« Examples
* Machine first
« Additive: Red-Green-Blue (RGB)
* Subtractive: Cyan-Magenta-Yellow-Black/Key (CMYK)
* Human first
* Hue-Saturation-Brightness (HSB)
* Processing first

* LAB (Luminance and a & b color channels)

Standard Red-Green-Blue
(sRGB)

* Red, Green, Blue -,
- 0.-1.

* Alpha (fransparency or
opacity)

« 00-100r0-255;1.0r
255

* 0. or O: completely opaque

* 1. or 1: completely
transparent

3/12/2018 CUNY | Brooklyn College 54

Hue-Saturation-Brightness
(HSB)

Hue:
« 0.-360.

* Saturation:

- 0.-1
* Brightness (or Value): S
.+ 0.-1. s

« Alpha (transparency or
opacity)

* 0.0-100r0-255; 1. or 255

« 0. or 0: completely opaque

« 1. or 1: completely transparent

3/12/2018 CUNY | Brooklyn College 55

Color and Static Factory
Method

» A static method that returns an instance of
the class

« Examples:

 static Color hsb(double hue, double saturation, double
brightness, double opacity)

« static Color rgb(int red, int green, int blue, double
opacity)

* In your application design: advantage and
disadvantage?

Blocking and Non-Blocking

* The show() method of a Stage object does
hot block the caller and returns
“immediately”.

* The showAndWait() method of a Stage
object shows the stage and waits for it to
be hidden (closed) before returning to the
caller.

* Cannot be called on the primary stage

Questions?

« Window coordinate system
* Blocking and non-blocking behaviors

» Color and color spaces

User Interface Components

* Layouts

* UI controls

« Text

* Canvas and Shapes

* Images

* Charts

* HTML content & embedded web browser
* Groups

Use Build-in UI Controls and
Layouts

* Layout containers: prebuilt layouts for UL
controls and more

» UI controls: prebuilt user interface controls

» Use texts

» Use 2D graphics

 Handle user interactions with simple event
handlers

Layout Containers (Panes)

* Packaged in javafx.scene.layout

« Arrangements of the UI controls within a scene graph

* Provide the following common layout models

« BorderPane
« HBox

« VBox

« StackPane

e GridPane
* FlowPane
e TilePane

* AnchorPane

Explore Layouts

* Using the JavaFX Ensemble 8 sample

application s
= Back Samples
¢ Run The o AnchorPane
ensemble.EnsembleApp g —
CIGSS o GridPane
Q Heo
o StackPane
Q rilerane

=
W' W ' W' W W' W' W M

UI Controls

* Packaged in javafx.scene.control

* Label

* Button

* Radio Button

« Toggle Button
* Checkbox

* Choice Box

« Text Field

+ Password Field
« Scroll Bar

« Scroll Pane

List View

Table View

Tree View

Tree Table View
ComboBox
Separator

Slider

Progress Bar
Progress Indicator

Hyperlink

Tooltip

HTML Editor
Titled Pane
Accordion

Menu

Color Picker

Date Picker
Pagination Control

File Chooser

3/12/2018

A Gallery of Selected
Controls

» Node 1

Yellow

¥ Node 2
~ ;, ' «Orange .=I I Hiperlink
ring —
» Node 3 | Blue Button

Accordion Check Boxes Color Button Graphic Button Hyperink

Row 1

| Row 2

lOPqus v | Row 1l Row 2 L

Long Row 3

Radio Buttons Toggle Button Horizontal List View Simple List View

First

Jacob

Isabella

Ethan

Progress Bar Progress Indicator

Simple
Label

Child Node 1

Some text ‘ Child Node 2

Graphic

Label

Advanced Label Text Feld Tool Bar

CUNY | Brooklyn College

64

Explore UTI Controls

* Using the JavaFX Ensemble 8 sample

application

* Ensemble 8 is in the
“Sample Programs”
repository

* Open it as a Maven project

* Run the
ensemble EnsembleApp
class

o Accordion

o Hidden SplitPane

Samples

' ' v W ' v W ' v g
=

|

|

|

|

|

<

| S—

Text

* Packaged in javafx.scene.text.Text

e | Text class inherits from the Shape class, and

~ the Shape class inherits from the Node class

* You can apply effects, animation, and transformations

Shape to text nodes in the same way as to any other Nodes.

/\ * you can set a stroke or apply a fill setting to text
nodes in the same way as to any other Shapes.

Text

2-D Graphics

* Draw images on Canvas
* Canvas

- javafx.scene.canvas.Canvas

 Using a set of graphics commands provided
by a GraphicsContext.

 GraphicsContext

» javafx.scene.canvas.GraphicsContext

Canvas canvas = new Canvas(WIDTH, HEIGHT);
GraphicsContext gc = canvas.getGraphicsContext2D();

Use Build-in UI Controls and
Layouts: Example

» Write a JavaFX application with prebuilt UT
controls and layouts

UI Design: Main Scene

* Perhaps, sketch on a piece of paper

Canvas
T winlbrash [hickness
Fatbrash Color

y 2
177100%
3/12/2018 CUNY | Brooklyn College

VBox

69

UT Design: Brush Thickness

* Perhaps, sketch on a piece of paper

—[%

3/12/2018 CUNY | Brooklyn College

Questions?

 JavaFX build-in components
 UT controls
« Text
* Layouts
+ U design

« What available in JavaFX?
« Sample applications for exploring JavaFX features
* Assignments

Explore JavaFX

 The applications are in the "Sample Programs”
repository

« JavaFX Ensemble 8
* Modena

« MandelbrotSet

« 3D Viewer

* In addition to build-in UL controls and layouts,
you should explore the following features ...

Assignment

* Practice assignment

* How is Project 2 going?

