CISC 3120
C10: Garbage Collection and

Constructors

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Outline

* Recap
« OOP in Java: composition & inheritance

* Project 1 and lessons learned?
* Memory management
» Java garbage collection
» Constructors

* Assignments

More about Stack and Heap

» Two important region of memories
« The Stack
* The Heap

Stack

 Methods are "stacked"”

» Stack is organized as stack frames

» A stack frame holds the state of the method
(method invocation and automatic data)

* Program counter: which line of code being executed

« Automatic data: values of method parameters and local
variables

Stack: Example

* doStuff gets called ...

doStuff() b
® go(4) , Z
doStuff() b
@ crazy() C
go(4) , Z
doStuff() b

3/5/2018

@

go(4) X, Z

doStuff() b

CUNY | Brooklyn College

void doStuff() {
boolean b = true;
go(4);

}

void go(int x) {
int z= x + 24,
crazy();

}
Void crazy() {
int ¢ = 36;

}

Heap

« Objects including their instance variables
live

Cat ginger = new Cat() ;

_The “ginger” object

Panther brave = new Panther();

~N

 The "brave” object

3/5/2018

CUNY | Brooklyn College

Questions?

« Stack and Heap

Program Data

« We restrict the definition of program data to data
associated with variables

 Data are stored in the memory, and "referenced"” via variables
 Variables are names assigned to allocated memory

* Program data: memory allocations of variables or referenced
by the variables

« In C++ and Java, program data are in three categories

 Automatic
* Static
* Dynamic

Automatic, Static, and Dynamic
Program Data
* They differ in

* (where) which region of memory the data reside
* (when) when and how the data is allocated in memory

« (when) when and how the data is deallocated in
memory

 Variables

« where: scope: where it can be accessed, related to
where it is allocated

» when: lifetime: when it is allocated and when it is
deallocated

Automatic Data

« Memory is automatically allocated and
deallocated for automatic data

» Where: the memory is allocated in a region of
memory called the stack

* When to allocate: the memory is allocated when
execution reaches the scope of the variable

* When to deallocate: the memory is deallocated
when execution leaves the scope of the variable

Automatic Data: Examples

e In C++ and Java: where are the variables for
automatic data?

int sumToNumber(int number) {
int sum = O;

for (int i=0; i<=number; i++) {
sum += i;

}

return sum;

Automatic Data: Examples

e In C++ and Java: where are the variables for

| ?
automatic data: int sumToNumber(int number) {

* Parameter: number int sum = O;
e Local variables: for (int i=0; i<number; i++) {
sum += i;
« sum }
° | return sum;
}

« What are their scopes?

Automatic Data: Examples

e In C++ and Java: where are the variables for
automatic data?

* What are their scopes?

int sumToNumber(int number) { _
int sum = O;
{ for (int i=0; i<=number; i++) {
i

sum += i;

— nhumber
} — sum

return sum;

Automatic Data: C++ and Java

« C++ permits automatic object allocation while
Java does not

» Example: the effect in C++ and that in Java are
different

void method() {
Cat cat;

}

* In C++, a Cat object is allocated and instantiated in

the Stack; in Java, only a reference variable in the
Stack

Automatic Data: C++ and Java

* In C++, object is allocated and instantiated in the
Stack; in Java, only a reference variable in the
Stack

C++ | void method() { Java | void method() {
Cat caft; -+ Cat cat;
} }
void method() { void method() {
Cat *cat; ~ Cat cat;
} }

Questions?

* Memory, program data, and variables
« Automatic program data

Static Data

Static data’s existence does not change during the entire
execution of a program

Where:

« the memory for static data is allocated in a region of memory,
generically referred to as the static data segment

When to allocate:

« the memory is allocated when the program starts,

« or when execution reaches the static variable declaration for the
first time

When to deallocate:
« the memory for static data is deallocated when the program exits

Static Data: Example in C++

« Tn C++: where are the variables for static

data?

int sumToNumber(int number) {
static int sum = O;
for (int i=0; ixnumber; i++) {
sum += i;

}

return sum;

Static Data: Example in C++

« Tn C++: where are the variables for static

data?

e Local variable: sum

* What is its scope?

int sumToNumber(int number) {
static int sum = O;
for (int i=0; i<number; i++) {
sum += i;

}

return sum;

Static Data: Example in C++

« Tn C++: where are the variables for static
data?

* What are their scopes?

int sumToNumber(int number) {
static int sum = O; —
for (int i=0; i<number; i++) {

sum += i; — sum

}

Static and Automatic Data:

Example in C++

* In C++: when are they allocated and

deallocated?

int sumToNumber(int number) {
static int sum = O;
for (int i=0; ixnumber; i++) {
sum += i;

}

return sum;

int sumToNumber(int number) {
int sum = O;
for (int i=0; i<number; i++) {
sum += i;

}

return sum;

Static and Automatic Data:

Example in C++
* How do the lifetimes of the automatic and
static variables differ?

« Compare them in running programs
* When sum is static

« When sum is automatic

cout <« sumToNumber(D) « endl;

cout <« sumToNumber(D) « endl;

Static Data in C++

e Th C++

» Variables declared as "static”

 Additionally, variables declared outside any
function and class body

Static Data: Example in Java

 Can we write the following in Java?

int sumToNumber(int number) {
static int sum = O;
for (int i=0; iknumber; i++) {
sum += i;

}

return sum,

Static Data in Java

* Can we write the following in Java?

int sumToNumber(int number) { _
static int sum = O;
for (int i=0; i<number; i++) {

sum += i;

}

return sum,

Static Data in Java

« Java is more restrictive

- Static variables can only declared within a class, but
not within any methods

« Static variables are class variables with the
scope of the class

* There exists exactly one incarnation of the
field, no matter how many instances (possibly
zero) of the class may eventually be created

Static Data: Example in Java

 Where are the static variables?

class StaticSum {
static int sum = O;
int sumToNumber(int number) {
for (int i=0; iknumber; i++) {

sum += i;

}

return sum;

Static Data: Example in Java

* What is its scope?

class StaticSum {
static int sum = O;
int sumToNumber(int number) {
for (int i=0; iknumber; i++) {

sum += i;

}

return sum;

Static Data: Example in Java

* What is the output of this program?

class StaticSum {
public static void main(String[] args) { StaticSum s = new StaticSum();
System.out.printin(s.sumToNumber(5)); System.out.printin(s.sumToNumber(5));
}
int sumToNumber(int number) {
for (int i=0; iknumber; i++) {

sum += i;

}

return sum;

}

static int sum = O;

Static Data in Java

Java is more restrictive

« Static variables can only declared within a class, but not within any
methods

Static variables are class variables with the scope of the class

Static variables has globe scope

Static variables has the lifetime of the program

Local and inner classes are only allowed with final static
variables

* To ensure that there exists exactly one incarnation of the field, no
matter how many instances (possibly zero) of the class may
eventually be created

Questions?

 Static program data

» Difference between C++ and Java in terms
of static program data

Dynamic Data

* Programmers are responsible for allocating dynamic data

« In C++: programmers are also responsible for deallocating the
dynamic data.

* Where: the memory for static data is allocated in a region of
memory, generically referred to as the heap

* When to allocate:
« the memory is allocated when the programmer invokes the "new" operator.
* When to deallocate:

* In Java: when the Java Garbage Collector reclaims the object allocated

« In C++: when the programmer invokes the delete operator to free the memory
allocated to the dynamic data

Dynamic Data in C++ and Java

 In C++, programmers can allocate memory
for any data types, i.e., o use "new”
operator against any data types

 In Java, programmers can only use "new"
operator for reference data types

Dynamic Data in C++ and Java:
Examples

 In Java: which one of the following is legal?

int i = new int; Cat ginger = new Cat(); | | int[] iArr = new int[10];

* In C++: which one of the following is legal?

int *iPtr = new int; | | Cat *gingerPtr = new Cat(): || int* iArr = new int[10];

Dynamic Data in C++ and Java:
Examples

 In Java: which one of the following is legal?

int i = new int; Cat ginger = new Cat(); o int[] iArr = new int[10],

* In C++: which one of the following is legal?

int *iPtr = new int; | | Cat *gingerPtr = ny int* iArr = new int[10];

3/5/2018 CUNY | Brooklyn College 35

Dynamic Data: Java and C++
Comparison

« Allocation:

* The same
Java and C++: dynamic data are created using the new operator
* The different
In Java: dynamic data can only be objects, cannot be primitive data types.

In C++: dynamic data can be any data types
* Deallocation
« The different

« In C++: programmers use the delete operator to deallocate memory

« In Java: Java Garbage Collector is responsible for deallocating the memory,
programmers have little control.

Objects in Java and C++

* C++ can have both automatically and

dynamically allocated objects
Cat *ginger = new Cat(); Cat ginger;
ginger->pounce(); ginger.pounce();
(*ginger).pounce();

« Java has only dynamically allocated objects

Cat ginger; Cat ginger = new Cat()

ginger.pounce(); ginger.pounce();

Objects in Java and C++

* C++ can have both automatically and

dynamically allocated objects
Cat ginger; Cat *ginger = new Cat();

ginger.pounce(); ginger->pounce().
(*ginger).pounce();

« Java has only dynamically allocated objects

Cat ginger; Cat ginger = new Cat()

ginger.pounce(); ginger.pounce().

3/5/2018 CUNY | Brooklyn College 38

Dynamic Data: Programming
Error in C++

* Programmers are responsible for managing
dynamic data, which is error-prone

» Common errors
* Inaccessible objects
* Memory leaks
* Dangling pointers

* A little bit more about C++ memory
management next

Memory Management in C++

« In C++: compare the following two.

Cat *ginger = new Cat(); Cat *ginger = new Cat();

ginger = nullptr; delete ginger:;

ginger = nullptr;

Memory Management in C++

« In C++: compare the following two.

Cat *ginger = new Cat(); Cat *ginger = new Cat();

ginger = nullptr; delete ginger:
x ginger = nullptr;

A programmer must explicitly free the memory
of an object allocated in the Heap in a C++
program; otherwise, the memory cannot be
reclaimed and used in the program.

Complexity of Memory
Management in C++

« Automatic and Heap storage in C++

Cat ginger(“ginger"); Cat *ginger = new Cat("ginger");

Cat tuxedo("tuxedo"); Cat tuxedo;

ginger.tap(tuxedo); ginger->tap(tuxedo);

// programmers don't free memory || delete ginger; // must free memory

* How about the following example?

Cat ginger;
Cat *catptr = &ginger:;

delete catptr;

Complexity of Memory
Management in C++

« Automatic and Heap storage in C++

Cat ginger(“ginger");
Cat tuxedo("tuxedo");
ginger.tap(tuxedo);

// programmers don't free memory

Cat *ginger = new Cat("ginger");
Cat tuxedo;
ipger->tap(tuxedo);

delete ginger; // must free memory

* How about the following example?

Cat ginger;
Cat *catptr = &ginger:;

delete catptr;
3/5/2018 CUNY | Brooklyn College

43

Memory Management in Java

 Tn Java:

Cat ginger = new Cat();
Cat tuxedo = new Cat();
ginger.tap(tuxedo);

Cat ginger = new Cat();
ginger.tap(new Cat());

 Programmers generally do not deal with

reclaiming the memory.

 Java Garbage Collector takes care of ift.

Memory Management in Java

* Tn Java:

Cat ginger = new Cat(); Cat ginger = new Cat();
Cat tuxedo = new Cat();
ginger.tap(tuxedo);

ginger.tap(new Cat());

e Th C++

Cat *ginger = new Cat():; Cat *ginger = new Cat();
Cat *tuxedo = new Cat();
ginger->tap(*tuxedo);

ginger->tap(*(new Cat()));
delete ginger

delete ginger;
// how about the other cat?

delete tuxedo;

Memory Management in Java

 Tn Java:

Cat ginger = new Cat(); Cat ginger = new Cat();
Cat tuxedo = new Cat();
ginger.tap(tuxedo);

ginger.tap(new Cat());

e Th C++

Cat *ginger = new Cat():; Cat *ginger = new Cat();
Cat *tuxedo = new Cat();
ginger->tap(*tuxedo):;

ginger->tap(*(new Cat()));

. delete ginger
delete ginger;

delete tuxedo;

// how about the other CGTX

3/5/2018 CUNY | Brooklyn College 46

Questions?

* Dynamic data in Java and C++
* Review C++ and Java memory management

* How they affect the ways to write programs

* JVM takes away some responsibility from
programmers

* Next, we shall discuss more about program
data, memory management/JVM, and
constructor

Java Garbage Collector

- Java is responsible for deallocating dynamic
data, and programmers are not.

* In Java, we often write

Cat ginger = new Cat();
ginger.pounce(new Animal()):

* In C++, we never write (although it compiles)
Cat *ginger = new Cat();

ginger->pounce(new Animal()):

Different Garbage Collection
Algorithms

» How does a Garbage Collector figure out an
object is no longer needed and can be
deallocated?

 Reference counting

* Trace-based garbage collector
* e.g., Baker's algorithm

* Copying collector

Advantage of Garbage
Collection

* Avoid bugs, such as,
* Forget to free memory (memory leak)
* Use already freed objects (dangling pointers)

* Also in Java, programmers do not have direct
memory access, and cannot accidentally
overwrite memory.

Disadvantage of Garbage
Collection

» Consume resources (memory and processor)

 Unpredictable stalls

* Memory leak still possible, but harder to
understand

* No manual control

Questions

» Concept of Garbage Collector

* Programming in Java that does garbage
collection

Constructors

 Like C++, constructors in Java
* have the identical nhame as the name of the class,
* do not specify return type,

» are called when an object is created,

(instance variables)

Default Constructor

 Java compiler provides the default

constructor when no constructor is written.

class Cat {

void pounce(Cat otherCat){...}

Cat ginger = new Cat(); // calling default constructor

ginger.pounce(new Cat());

v

3/5/2018 CUNY | Brooklyn College

54

Default Constructor?

class Cat {
private String name;
public Cat(String name) {this.name = hame;}
void pounce(Cat otherCat) { ... }

e Can we use the default constructor now?

Cat ginger = new Cat();

ginger.pounce(new Cat("tiger"));

Default Constructor?

class Cat {
private String name;
public Cat(String name) {this.name = hame;}
void pounce(Cat otherCat) { ... }

e Can we use the default constructor now?

Cat ginger = new Cat();
ginger.pounce(new Cat("tiger")): x

3/5/2018 CUNY | Brooklyn College

56

Default and Parameterized
Constructors

« Java ceases to create the default

constructor when a constructor is provided

class Cat {
private String name;
public Cat() {name = "cat";}
public Cat(String name) {this.name = name;}
void pounce(Cat otherCat){ ... }

}

Cat ginger = new Cat(); ...

v

Questions?

* Purpose of constructors

e Default constructor

Constructor and Inheritance

* When we create an object of a
class, constructors of all super-
classes must be called explicitly
or implicitly

« Can you hame the constructors
being called for this example?

Animal

1

Feline

2

Panther brave = new Panther("brave");

Cat

Panther

Calling Super Class's
Constructor Implicitly

 What if we write the constructor as follows,

class Panther extends Feline {
Color color;
public Panther(String name, Color color) {
this.color = color;

}
public void makeNoise() {...}

}

Animal

1

Feline

2

Cat

Panther

Calling Super Class's

Constructor Implicitly

« Java compiler will call Feline's default

constructor.

class Panther extends Feline {
Color color;
public Panther(String name, Color color) {
this.color = color;

}
public void makeNoise() {...}

}

Animal

1

Feline

2

Cat

Panther

Calling Super Class's
Constructor Explicitly

« Use "super”

class Panther extends Feline {
Color color;
public Panther(String name, Color color) {
super(name);
this.color = color;

}
public void makeNoise() {...}

}

Animal

1

Feline

2

Cat

Panther

Questions?

 Constructors

* Default constructor

* Overloading constructors

* Inheritance and constructors

 Stack and heap

Assignments

* Project 1
* How is it going?
 Codelab
» Upcoming Project 2
 This Wednesday (on inheritance & polymorphism)

