
CISC 3120

C10: Garbage Collection and
Constructors

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/5/2018 1CUNY | Brooklyn College

Outline

• Recap

• OOP in Java: composition & inheritance

• Project 1 and lessons learned?

• Memory management

• Java garbage collection

• Constructors

• Assignments

3/5/2018 CUNY | Brooklyn College 2

More about Stack and Heap

• Two important region of memories

• The Stack

• The Heap

3/5/2018 CUNY | Brooklyn College 3

Stack

• Methods are “stacked”

• Stack is organized as stack frames

• A stack frame holds the state of the method
(method invocation and automatic data)

• Program counter: which line of code being executed

• Automatic data: values of method parameters and local
variables

3/5/2018 CUNY | Brooklyn College 4

Stack: Example

3/5/2018 CUNY | Brooklyn College 5

void doStuff() {

boolean b = true;

go(4);

}

void go(int x) {

int z = x + 24;

crazy();

}

Void crazy() {

int c = 36;

}

doStuff() b

doStuff() b

• doStuff gets called …

go(4) x, z

doStuff() b

go(4) x, z

crazy() c

doStuff() b

go(4) x, z

Heap

• Objects including their instance variables
live

3/5/2018 CUNY | Brooklyn College 6

Cat ginger = new Cat() ;

Panther brave = new Panther();
The “ginger” object

The “brave” object

ginger brave

Stack Heap

Questions?

• Stack and Heap

3/5/2018 CUNY | Brooklyn College 7

Program Data

• We restrict the definition of program data to data
associated with variables

• Data are stored in the memory, and “referenced” via variables

• Variables are names assigned to allocated memory

• Program data: memory allocations of variables or referenced
by the variables

• In C++ and Java, program data are in three categories

• Automatic

• Static

• Dynamic

3/5/2018 CUNY | Brooklyn College 8

Automatic, Static, and Dynamic
Program Data

• They differ in

• (where) which region of memory the data reside

• (when) when and how the data is allocated in memory

• (when) when and how the data is deallocated in
memory

• Variables

• where: scope: where it can be accessed, related to
where it is allocated

• when: lifetime: when it is allocated and when it is
deallocated

3/5/2018 CUNY | Brooklyn College 9

Automatic Data

• Memory is automatically allocated and
deallocated for automatic data

• Where: the memory is allocated in a region of
memory called the stack

• When to allocate: the memory is allocated when
execution reaches the scope of the variable

• When to deallocate: the memory is deallocated
when execution leaves the scope of the variable

3/5/2018 CUNY | Brooklyn College 10

Automatic Data: Examples

• In C++ and Java: where are the variables for
automatic data?

3/5/2018 CUNY | Brooklyn College 11

int sumToNumber(int number) {

int sum = 0;

for (int i=0; i<=number; i++) {

sum += i;
}

return sum;

}

Automatic Data: Examples

• In C++ and Java: where are the variables for
automatic data?

• Parameter: number

• Local variables:

• sum

• i

• What are their scopes?

3/5/2018 CUNY | Brooklyn College 12

int sumToNumber(int number) {

int sum = 0;

for (int i=0; i<number; i++) {

sum += i;
}

return sum;

}

Automatic Data: Examples

• In C++ and Java: where are the variables for
automatic data?

• What are their scopes?

3/5/2018 CUNY | Brooklyn College 13

int sumToNumber(int number) {

int sum = 0;

for (int i=0; i<=number; i++) {

sum += i;
}

return sum;

}

number
i

sum

Automatic Data: C++ and Java

• C++ permits automatic object allocation while
Java does not

• Example: the effect in C++ and that in Java are
different

• In C++, a Cat object is allocated and instantiated in
the Stack; in Java, only a reference variable in the
Stack

3/5/2018 CUNY | Brooklyn College 14

void method() {

Cat cat;

}

Automatic Data: C++ and Java

• In C++, object is allocated and instantiated in the
Stack; in Java, only a reference variable in the
Stack

C++ Java

3/5/2018 CUNY | Brooklyn College 15

void method() {

Cat cat;

}

void method() {

Cat cat;

}

void method() {

Cat *cat;

}

void method() {

Cat cat;

}

Questions?

• Memory, program data, and variables

• Automatic program data

3/5/2018 CUNY | Brooklyn College 16

Static Data

• Static data’s existence does not change during the entire
execution of a program

• Where:

• the memory for static data is allocated in a region of memory,
generically referred to as the static data segment

• When to allocate:

• the memory is allocated when the program starts,

• or when execution reaches the static variable declaration for the
first time

• When to deallocate:

• the memory for static data is deallocated when the program exits

3/5/2018 CUNY | Brooklyn College 17

Static Data: Example in C++

• In C++: where are the variables for static
data?

3/5/2018 CUNY | Brooklyn College 18

int sumToNumber(int number) {

static int sum = 0;

for (int i=0; i<number; i++) {

sum += i;
}

return sum;

}

Static Data: Example in C++

• In C++: where are the variables for static
data?

• Local variable: sum

• What is its scope?

3/5/2018 CUNY | Brooklyn College 19

int sumToNumber(int number) {

static int sum = 0;

for (int i=0; i<number; i++) {

sum += i;
}

return sum;

}

Static Data: Example in C++

• In C++: where are the variables for static
data?

• What are their scopes?

3/5/2018 CUNY | Brooklyn College 20

int sumToNumber(int number) {

static int sum = 0;

for (int i=0; i<number; i++) {

sum += i;
}

}

sum

Static and Automatic Data:
Example in C++

• In C++: when are they allocated and
deallocated?

3/5/2018 CUNY | Brooklyn College 21

int sumToNumber(int number) {

static int sum = 0;

for (int i=0; i<number; i++) {

sum += i;
}

return sum;

}

int sumToNumber(int number) {

int sum = 0;

for (int i=0; i<number; i++) {

sum += i;
}

return sum;

}

Static and Automatic Data:
Example in C++

• How do the lifetimes of the automatic and
static variables differ?

• Compare them in running programs

• When sum is static

• When sum is automatic

3/5/2018 CUNY | Brooklyn College 22

cout << sumToNumber(5) << endl;

cout << sumToNumber(5) << endl;

Static Data in C++

• In C++

• Variables declared as “static”

• Additionally, variables declared outside any
function and class body

3/5/2018 CUNY | Brooklyn College 23

Static Data: Example in Java

• Can we write the following in Java?

3/5/2018 CUNY | Brooklyn College 24

int sumToNumber(int number) {

static int sum = 0;

for (int i=0; i<number; i++) {

sum += i;
}

return sum;

}

Static Data in Java

• Can we write the following in Java?

3/5/2018 CUNY | Brooklyn College 25

int sumToNumber(int number) {

static int sum = 0;

for (int i=0; i<number; i++) {

sum += i;
}

return sum;

}

Static Data in Java

• Java is more restrictive

• Static variables can only declared within a class, but
not within any methods

• Static variables are class variables with the
scope of the class

• There exists exactly one incarnation of the
field, no matter how many instances (possibly
zero) of the class may eventually be created

3/5/2018 CUNY | Brooklyn College 26

Static Data: Example in Java

• Where are the static variables?

3/5/2018 CUNY | Brooklyn College 27

class StaticSum {

static int sum = 0;

int sumToNumber(int number) {

for (int i=0; i<number; i++) {

sum += i;
}

return sum;

}

}

Static Data: Example in Java

• What is its scope?

3/5/2018 CUNY | Brooklyn College 28

class StaticSum {

static int sum = 0;

int sumToNumber(int number) {

for (int i=0; i<number; i++) {

sum += i;
}

return sum;

}

}

Static Data: Example in Java

• What is the output of this program?

3/5/2018 CUNY | Brooklyn College 29

class StaticSum {

public static void main(String[] args) { StaticSum s = new StaticSum();

System.out.println(s.sumToNumber(5)); System.out.println(s.sumToNumber(5));

}

int sumToNumber(int number) {

for (int i=0; i<number; i++) {

sum += i;
}

return sum;

}

static int sum = 0;

}

Static Data in Java

• Java is more restrictive

• Static variables can only declared within a class, but not within any
methods

• Static variables are class variables with the scope of the class

• Static variables has globe scope

• Static variables has the lifetime of the program

• Local and inner classes are only allowed with final static
variables

• To ensure that there exists exactly one incarnation of the field, no
matter how many instances (possibly zero) of the class may
eventually be created

3/5/2018 CUNY | Brooklyn College 30

Questions?

• Static program data

• Difference between C++ and Java in terms
of static program data

3/5/2018 CUNY | Brooklyn College 31

Dynamic Data

• Programmers are responsible for allocating dynamic data

• In C++: programmers are also responsible for deallocating the
dynamic data.

• Where: the memory for static data is allocated in a region of
memory, generically referred to as the heap

• When to allocate:

• the memory is allocated when the programmer invokes the “new” operator.

• When to deallocate:

• In Java: when the Java Garbage Collector reclaims the object allocated

• In C++: when the programmer invokes the delete operator to free the memory
allocated to the dynamic data

3/5/2018 CUNY | Brooklyn College 32

Dynamic Data in C++ and Java

• In C++, programmers can allocate memory
for any data types, i.e., to use “new”
operator against any data types

• In Java, programmers can only use “new”
operator for reference data types

3/5/2018 CUNY | Brooklyn College 33

Dynamic Data in C++ and Java:
Examples

• In Java: which one of the following is legal?

• In C++: which one of the following is legal?

3/5/2018 CUNY | Brooklyn College 34

int i = new int;

int *iPtr = new int;

Cat ginger = new Cat(); int[] iArr = new int[10];

Cat *gingerPtr = new Cat(); int* iArr = new int[10];

Dynamic Data in C++ and Java:
Examples

• In Java: which one of the following is legal?

• In C++: which one of the following is legal?

3/5/2018 CUNY | Brooklyn College 35

int i = new int;

int *iPtr = new int;

Cat ginger = new Cat(); int[] iArr = new int[10];

Cat *gingerPtr = new Cat(); int* iArr = new int[10];

Dynamic Data: Java and C++
Comparison
• Allocation:

• The same

• Java and C++: dynamic data are created using the new operator

• The different

• In Java: dynamic data can only be objects, cannot be primitive data types.

• In C++: dynamic data can be any data types

• Deallocation

• The different

• In C++: programmers use the delete operator to deallocate memory

• In Java: Java Garbage Collector is responsible for deallocating the memory,
programmers have little control.

3/5/2018 CUNY | Brooklyn College 36

Objects in Java and C++

• C++ can have both automatically and
dynamically allocated objects

• Java has only dynamically allocated objects

3/5/2018 CUNY | Brooklyn College 37

Cat *ginger = new Cat();

ginger->pounce();

(*ginger).pounce();

Cat ginger;

ginger.pounce();

Cat ginger = new Cat()

ginger.pounce();

Cat ginger;

ginger.pounce();

Objects in Java and C++

• C++ can have both automatically and
dynamically allocated objects

• Java has only dynamically allocated objects

3/5/2018 CUNY | Brooklyn College 38

Cat *ginger = new Cat();

ginger->pounce();

(*ginger).pounce();

Cat ginger;

ginger.pounce();

Cat ginger = new Cat()

ginger.pounce();

Cat ginger;

ginger.pounce();

Dynamic Data: Programming
Error in C++

• Programmers are responsible for managing
dynamic data, which is error-prone

• Common errors

• Inaccessible objects

• Memory leaks

• Dangling pointers

• A little bit more about C++ memory
management next

3/5/2018 CUNY | Brooklyn College 39

Memory Management in C++

• In C++: compare the following two.

3/5/2018 CUNY | Brooklyn College 40

Cat *ginger = new Cat();

ginger = nullptr;

Cat *ginger = new Cat();

delete ginger;

ginger = nullptr;

Memory Management in C++

• In C++: compare the following two.

• A programmer must explicitly free the memory
of an object allocated in the Heap in a C++
program; otherwise, the memory cannot be
reclaimed and used in the program.

3/5/2018 CUNY | Brooklyn College 41

Cat *ginger = new Cat();

ginger = nullptr;

Cat *ginger = new Cat();

delete ginger;

ginger = nullptr;

Complexity of Memory
Management in C++

• Automatic and Heap storage in C++

• How about the following example?

3/5/2018 CUNY | Brooklyn College 42

Cat ginger(“ginger”);

Cat tuxedo(“tuxedo”);

ginger.tap(tuxedo);

// programmers don’t free memory

Cat *ginger = new Cat(“ginger”);

Cat tuxedo;

ginger->tap(tuxedo);

delete ginger; // must free memory

Cat ginger;

Cat *catptr = &ginger;

delete catptr;

Complexity of Memory
Management in C++

• Automatic and Heap storage in C++

• How about the following example?

3/5/2018 CUNY | Brooklyn College 43

Cat ginger(“ginger”);

Cat tuxedo(“tuxedo”);

ginger.tap(tuxedo);

// programmers don’t free memory

Cat *ginger = new Cat(“ginger”);

Cat tuxedo;

ginger->tap(tuxedo);

delete ginger; // must free memory

Cat ginger;

Cat *catptr = &ginger;

delete catptr;

Memory Management in Java

• In Java:

• Programmers generally do not deal with
reclaiming the memory.

• Java Garbage Collector takes care of it.

3/5/2018 CUNY | Brooklyn College 44

Cat ginger = new Cat();

Cat tuxedo = new Cat();

ginger.tap(tuxedo);

Cat ginger = new Cat();

ginger.tap(new Cat());

Memory Management in Java

• In Java:

• In C++

3/5/2018 CUNY | Brooklyn College 45

Cat ginger = new Cat();

Cat tuxedo = new Cat();

ginger.tap(tuxedo);

Cat ginger = new Cat();

ginger.tap(new Cat());

Cat *ginger = new Cat();

Cat *tuxedo = new Cat();

ginger->tap(*tuxedo);

delete ginger;

delete tuxedo;

Cat *ginger = new Cat();

ginger->tap(*(new Cat()));

delete ginger

// how about the other cat?

Memory Management in Java

• In Java:

• In C++

3/5/2018 CUNY | Brooklyn College 46

Cat ginger = new Cat();

Cat tuxedo = new Cat();

ginger.tap(tuxedo);

Cat ginger = new Cat();

ginger.tap(new Cat());

Cat *ginger = new Cat();

Cat *tuxedo = new Cat();

ginger->tap(*tuxedo);

delete ginger;

delete tuxedo;

Cat *ginger = new Cat();

ginger->tap(*(new Cat()));

delete ginger

// how about the other cat?

Questions?

• Dynamic data in Java and C++

• Review C++ and Java memory management

• How they affect the ways to write programs

• JVM takes away some responsibility from
programmers

• Next, we shall discuss more about program
data, memory management/JVM, and
constructor

3/5/2018 CUNY | Brooklyn College 47

Java Garbage Collector

• Java is responsible for deallocating dynamic
data, and programmers are not.

• In Java, we often write

• In C++, we never write (although it compiles)

3/5/2018 CUNY | Brooklyn College 48

Cat ginger = new Cat();

ginger.pounce(new Animal());

Cat *ginger = new Cat();

ginger->pounce(new Animal());

Different Garbage Collection
Algorithms

• How does a Garbage Collector figure out an
object is no longer needed and can be
deallocated?

• Reference counting

• Trace-based garbage collector

• e.g., Baker’s algorithm

• Copying collector

3/5/2018 CUNY | Brooklyn College 49

Advantage of Garbage
Collection

• Avoid bugs, such as,

• Forget to free memory (memory leak)

• Use already freed objects (dangling pointers)

• Also in Java, programmers do not have direct
memory access, and cannot accidentally
overwrite memory.

3/5/2018 CUNY | Brooklyn College 50

Disadvantage of Garbage
Collection

• Consume resources (memory and processor)

• Unpredictable stalls

• Memory leak still possible, but harder to
understand

• No manual control

3/5/2018 CUNY | Brooklyn College 51

Questions

• Concept of Garbage Collector

• Programming in Java that does garbage
collection

3/5/2018 CUNY | Brooklyn College 52

Constructors

• Like C++, constructors in Java

• have the identical name as the name of the class,

• do not specify return type,

• are called when an object is created,

• and are responsible for initializing the object
(instance variables)

3/5/2018 CUNY | Brooklyn College 53

Default Constructor

• Java compiler provides the default
constructor when no constructor is written.

3/5/2018 CUNY | Brooklyn College 54

Cat ginger = new Cat(); // calling default constructor

ginger.pounce(new Cat());

class Cat {

void pounce(Cat otherCat) {…}

}

Default Constructor?

• Can we use the default constructor now?

3/5/2018 CUNY | Brooklyn College 55

Cat ginger = new Cat();

ginger.pounce(new Cat(“tiger”));

class Cat {

private String name;

public Cat(String name) {this.name = name;}

void pounce(Cat otherCat) { … }

}

Default Constructor?

• Can we use the default constructor now?

3/5/2018 CUNY | Brooklyn College 56

Cat ginger = new Cat();

ginger.pounce(new Cat(“tiger”));

class Cat {

private String name;

public Cat(String name) {this.name = name;}

void pounce(Cat otherCat) { … }

}

Default and Parameterized
Constructors

• Java ceases to create the default
constructor when a constructor is provided

3/5/2018 CUNY | Brooklyn College 57

class Cat {

private String name;

public Cat() {name = “cat”;}

public Cat(String name) {this.name = name;}

void pounce(Cat otherCat) { … }

}

Cat ginger = new Cat(); …

Questions?

• Purpose of constructors

• Default constructor

3/5/2018 CUNY | Brooklyn College 58

Constructor and Inheritance

• When we create an object of a
class, constructors of all super-
classes must be called explicitly
or implicitly

• Can you name the constructors
being called for this example?

3/5/2018 CUNY | Brooklyn College 59

Animal

Feline

Cat Panther
Panther brave = new Panther(“brave”);

Calling Super Class’s
Constructor Implicitly

• What if we write the constructor as follows,

3/5/2018 CUNY | Brooklyn College 60

class Panther extends Feline {

Color color;

public Panther(String name, Color color) {

this.color = color;

}

public void makeNoise() {…}

}

Animal

Feline

Cat Panther

Calling Super Class’s
Constructor Implicitly

• Java compiler will call Feline’s default
constructor.

3/5/2018 CUNY | Brooklyn College 61

class Panther extends Feline {

Color color;

public Panther(String name, Color color) {

this.color = color;

}

public void makeNoise() {…}

}

Animal

Feline

Cat Panther

Calling Super Class’s
Constructor Explicitly

• Use “super”

3/5/2018 CUNY | Brooklyn College 62

class Panther extends Feline {

Color color;

public Panther(String name, Color color) {

super(name);

this.color = color;

}

public void makeNoise() {…}

}

Animal

Feline

Cat Panther

Questions?

• Constructors

• Default constructor

• Overloading constructors

• Inheritance and constructors

• Stack and heap

3/5/2018 CUNY | Brooklyn College 63

Assignments

• Project 1

• How is it going?

• CodeLab

• Upcoming Project 2

• This Wednesday (on inheritance & polymorphism)

3/5/2018 CUNY | Brooklyn College 64

