CISC 3120
C09: Interface, and

Abstract Class and Method

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Outline

Recap
* Inheritance and polymorphism
« Nested classes: inner class and static nested class

« Assignments
Abstract method
Abstract class

Interfaces

The Object super class

Determining object type

Anonymous class, functional interface, and Lambda expression

Recap: Assignment Assignment
W05-1_02-26

Shape

area()

Circle Rectangle

area() area()

2/28/2018 CUNY | Brooklyn College

The Shape Class

* Do you like the area() method here?
public class Shape { o ooeoooooememmTTTTeeee

__-publi¢ double area() {

-
-

o System.out.printIn(" This method is not supposed to be called.");

' return O;
\

[

Remarks

« We know semantically that each shape has a behavior to compute its area

« However, we don't know the algorithm without knowing the actual shape

« Do we really want to instantiate the Shape class?

Abstract Method

« An abstract method has no implementation
public abstract class Shape {
public abstract double area():

}
In C++, sometimes called (pure) virtual function

 We shall discuss
« Abstract class and method

 Interface (prior to Java 8, equivalent to pure
abstract class)

Abstract Class

* A class that is declared abstract

« Example
abstract class Animal {

}

* Abstract classes cannot be instantiated, but
they can be subclassed.

* Any class that has an abstract method must be
declared "abstract”

Subclass & Instantiation

* Abstract classes cannot be instantiated, but
they can be subclassed.

abstract class Animal {

}
* How about these examples?

Animal animal = new Animal(); class Dog extends Animal {...}

Animal dog = new Dog();

Subclass & Instantiation

* Abstract classes cannot be instantiated, but
they can be subclassed.

abstract class Animal {

}
class Dog extends Animal {...}

Animal animal = new Animal();k, Animal dog = new Dog();

2/28/2018 CUNY | Brooklyn College 8

Abstract Method

A method that is declared without an
implementation

abstract void makeNoise();

* A class that has an abstract method must be
declared abstract

* How about these examples?

class Animal { abstract class Animal {
abstract void makeNoise(); abstract void makeNoise();

} }

Class with Abstract Method

* A class that has an abstract method must be
declared abstract

class Animal {
abstract void makeNoise();

}

abstract class Animal {

2/28/2018

x

abstract void makeNoise();

CUNY | Brooklyn College

v

10

Subclass an Abstract Class

» Concrete subclass

* A subclass may provide implementations for all
of the abstract methods in its parent class.

* Abstract subclass

 The subclass must also be declared abstract if it
does not provide implementation of all of the
abstract methods in its parent class.

Example: The Animal Kingdom

Animal

/

Feline

.

Cat

2/28/2018

Dove

Panther

CUNY | Brooklyn College

Whale

12

Questions?

* Abstract class
* Abstract method

* The "Animal Kingdom" example in the
"Sample Programs” repository

Different Classes, Same
Behaviors

» Different classes, although vastly different,
may exhibit similar behavior

* Any communication devices can "transmit” and
"receive”

* Any vehicles can "move”

 Any objects can be "compared” to each other

Interfaces

* Not the "interface” in "Graphical User Interface”

 Java has a reference type, called interface

* Typically contain abstract methods only.

« Java 8 introduces the concept of default methods and permits
static methods (abstract methods with default implementation)

« Interfaces are abstract classes, cannot be instantiated

* can only be implemented by classes or extended by other
interfaces

* "implements” and “"extends" are two distinct Java terms

* A class "implements” an interface

Example: The Animal Kingdom
Enhanced

 Different animals have different motions
e Birds Fly
* Whales Swim
« And Cats ...

Example: The Animal Kingdom

Interface
FelineMotion

A

Animal

Interface
BirdMotion

Interface
WhaleMotion

Feline

.

Cat

Panther

2/28/2018

Whale

CUNY | Brooklyn College

17

Example: Birds Fly, Whales
Swim, and Cats ...

public interface BirdMotion {
public void fly(Direction direction, double speed, double distance);

public intferface WhaleMotion {

public void swim(Direction direction, double speed, double distance);

public interface FelineMotion {

public void walk(Direction direction, double speed, double distance);

public void pounce(Animal prey);

Example: Implementing
Interfaces

abstract class Feline implements FelineMotion {

public void walk(Direction direction, double speed, double distance) { ... }

public void pounce(Animal prey) { .. }

class Dove extends Animal implements BirdMotion { ...

public void fly(Direction direction, double speed, double distance) { ... }

Questions?

« Interfaces
* Why?

« How?

Using Interface as Type

 Interfaces are data types
void flyAll(ArrayList<BirdMotion> flyingAnimals) {

Void moveBird(BirdMotion bird) {
}

Evolving Interfaces

« Interfaces can be extended (like classes)

interface CatMotion extends FelineMotion {

public void tap(Animal animal) ;

}

Example: Extending

FelineMotion

Interface

FelineMotion

A A

Animal

Interface
BirdMotion

Interface
WhaleMotion

...............................

Interface
CatMotion

Feline

Dove

A

.

2/28/2018

Panther

Whale

interface CatMotion extends FelineMotion {

public void tap(Animal animal) ;

CUNY | Brooklyn College

23

Implementing Multiple
Interfaces

* A class can implement multiple interfaces
* But a class cannot extend multiple classes

« Which one of the following are is allowed in
Java?

class FlyingCat extends || class FlyingCat implements || class FlyingCat extends
Cat, Dove { BirdMotion, CatMotion { Feline implements
BirdMotion, CatMotion {

Implementing Multiple
Interfaces

* A class can implement multiple interfaces

e But a class cannot extend mu

tiple classes

class FlyingCat extends
Cat, Dove {

class FlyingCat implements
BirdMotion, CatMotion {

}. x

2/28/2018

-

class FlyingCat extends
Feline implements

BirdMotion, CatMotion {

CUNY | Brooklyn College

)

25

Example: Flying Cat in the Magic
Kingdom

Interface

FelineMotion

.............

A

Animal

Interface
BirdMotion

/

Interface
WhaleMotion

Interface
CatMotion

Dove

A\

Whale

2/28/2018

Panther

FlyingCat

CUNY | Brooklyn College

26

Questions

« Interfaces
* Model common behaviors

Have only abstract methods

« Since Java 8, can have default methods and static methods
(virtual/abstract functions/methods with default
implementations)

Are data types
Can be extended

Must be implemented

The "Animal Kingdom Enhanced"” in the "Sample Programs”
repo

What an object can do?

 The class hierarchy presents a problem
* What data type are we dealing with?
« As a programmer how do we cope with it?

 Use appropriate data types by design (preferred)
void flyAll(ArrayList<BirdMotion> flyingAnimals) {

}
« Check object type at runtime
+ Using instanceof

* Using Class.isInstance()

« Using Class.isAssignableFrom()

https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#isInstance-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#isAssignableFrom-java.lang.Class-

Operator instanceof

* Evaluates to true if the object is a given type;
false otherwise

* Must know at compilation time the data type
whether the object is instance of

void move(Animal animal) {
if (animal instanceof Cat) {

}

Method Class.isInstance()

* Evaluates to true if the object is the data type of another object:;
false otherwise

« Aa=new A(); Bb=newB(). agetClass().isInstance(b)

 is b aninstance of A? True if any of the two scenarios in the graph

« Does not need to know at compilation tfime the data type whether the
object is instance of

void move(Animal animal) { A

if (animal.getClass().isInstance(garfield)) {

A
Cat garfield = new Cat(); A
1 .

I

} B B

Method
Class.isAssignableFrom()

* A.isAssignableFrom(B)
* where B is a class

* Returns true if any of these two scenarios

A

: ;

B

Questions

* What is the object's data type?
» instanceof
* Class.isInstance

* Class.isAssignableFrom

* The "Vehicles" in the "Sample Programs”
repo

Nested Class

* Inner class (Non-static nested class)

e Discussed in last class

e Static nested class

» Discussed in last class
 Local class

* Anonymous class

* Functional interface and Lamba expression

Local Class

* Classes defined within a block
* What between a pair of balanced braces ({ ... })

* A block can be used anywhere a single statement

is allowed. class OuterClass {

{

glass NestedClass { ... }

-

Local Class: Characteristics

Local classes are similar to inner classes

A local class has access to the members of its enclosing class.

In addition, a local class has access to final or effectively final local
variables

* Final variables: e.g., final int a;

« Effectively final, e.g., int a = 1; but variable "a" never changes after
initialization

It can access the method's parameters

However,
« cannot declare static initializers or member interfaces in a local class.

* can only have static members only when they are constants (final static ...)

Anonymous Class

* Essentially, a local class without a name

* Created by declaring and instantiating a
class at the same time

« Use it when need a local class only once

class OuterClass {

{ ..
ParentClass a = new ParentClass() { ...}

}
-

Anonymous Classes are Local
Classes

It has access o the members of its enclosing class.

In addition, it has access to final or effectively final local
variables

* Final variables: e.g., final int a;

« Effectively final, e.g., int a = 1; but variable "a" never changes after
initialization

It can access the method's parameters

However,
« cannot declare static initializers or member interfaces in a local class.

* can only have static members only when they are constants (final static

")

Nested Classes and Java API

* Many Java API methods have interface parameters

« Comparators, Predicate, ...

« Commonly used with nested classes (most of ten, anonymous classes)
« Examples:

« java.util.Arrays: binarySearch(T[] a, T key, Comparator<? super T> c)

java.util.ArrayList: sort(Comparator<? super E> c)

java.util.ArrayList: removeIlf(Predicate<? super E> filter)

java.util.Collections: binarySearch(List<? extends T> list, T key,
Comparator<? super T> c¢)

java.util.Collections: removeIf(Predicate<? super E> filter)

Functional Interface

* Any interface that contains only one
abstract method

« Since Java 8, a functional interface may contain
one or more default methods or static methods

Use Functional Interface

* In your own design, sometime functional
inferface is better choice

* More often, you use functional interfaces
because some Java API methods require

them

« Examples:

* https://docs.oracle.com/javase/8/docs/api/ java/util/f
unction/package-summary.html

2/28/2018 CUNY | Brooklyn College 40

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html

Functional Interface and
Anonymous Class

* You can declare and instantiate a local class, or more often an
anonymous class

« Example
ArrayList<Person> personlList = new ArrayList<Person>():
Arrays.sort(personList, new Comparator<Person> {
@Override
public int compare(Person lhs, Person rhs) {
// buggy (what if rhs is null?)
return lhs.getName().compareTo(rhs.getName()):

}

Lambda Expression

* A simple way to declare and instantiate a class

ArrayList<Person> personList = new ArrayList<Person>();
Arrays.sort(personList, new Comparator<Person> {
@Override
public int compare(Person lhs, Person rhs) {
// buggy (what if rhs is null?)
return lhs.getName().compareTo(rhs.getName()):

}

}

ArraylList<Person> personList = new ArrayList<Person>();
Arrays.sort(personList, (lhs, rhs) -> Ihs.getName().compareTo(rhs.getName())}

Questions

* Nested classes
* Nested classes in Java API
* Lambda expression

* The "Nested Class Example” in the "Sample
Programs” repo

Inheritance, Generic
Programming, and Java APT

« Commonly seen these in Java APT
* <? extends B>
* Any data type that is of data type E or a sub-type of E
« <? super B>

* Any data type that is of data type E or a super-type of
E

» Discuss more in the future

Recall: The Object Super Class

« Java has a class called Object, like
* All classes are subclass of Object in Java

Object

boolean equals()
Class getClass()

int hasCode()
String toString()

Questions

* A few items commonly seen in Java API
* The Java Object class

Assignment

* Practice Assignment
* Codelab

