
CISC 3120

C09: Interface, and
Abstract Class and Method

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/28/2018 1CUNY | Brooklyn College

Outline

• Recap

• Inheritance and polymorphism

• Nested classes: inner class and static nested class

• Assignments

• Abstract method

• Abstract class

• Interfaces

• The Object super class

• Determining object type

• Anonymous class, functional interface, and Lambda expression

2/28/2018 CUNY | Brooklyn College 2

Recap: Assignment Assignment
W05-1_02-26

2/28/2018 CUNY | Brooklyn College 3

Shape

area()

Circle

area()

Rectangle

area()

The Shape Class

• Do you like the area() method here?
public class Shape { …

public double area() {

System.out.println("This method is not supposed to be called.");

return 0;

} …

}

• Remarks

• We know semantically that each shape has a behavior to compute its area

• However, we don’t know the algorithm without knowing the actual shape

• Do we really want to instantiate the Shape class?

2/28/2018 CUNY | Brooklyn College 4

Abstract Method

• An abstract method has no implementation

public abstract class Shape {

public abstract double area();

}

In C++, sometimes called (pure) virtual function

• We shall discuss

• Abstract class and method

• Interface (prior to Java 8, equivalent to pure
abstract class)

2/28/2018 CUNY | Brooklyn College 5

Abstract Class

• A class that is declared abstract

• Example

abstract class Animal {

…

}

• Abstract classes cannot be instantiated, but
they can be subclassed.

• Any class that has an abstract method must be
declared “abstract”

2/28/2018 CUNY | Brooklyn College 6

Subclass & Instantiation

• Abstract classes cannot be instantiated, but
they can be subclassed.

abstract class Animal {

…

}

• How about these examples?

2/28/2018 CUNY | Brooklyn College 7

Animal animal = new Animal(); class Dog extends Animal {…}

Animal dog = new Dog();

Subclass & Instantiation

• Abstract classes cannot be instantiated, but
they can be subclassed.

abstract class Animal {

…

}

2/28/2018 CUNY | Brooklyn College 8

Animal animal = new Animal();

class Dog extends Animal {…}

Animal dog = new Dog();

Abstract Method

• A method that is declared without an
implementation

abstract void makeNoise();

• A class that has an abstract method must be
declared abstract

• How about these examples?

2/28/2018 CUNY | Brooklyn College 9

class Animal {

abstract void makeNoise();

}

abstract class Animal {

abstract void makeNoise();

}

Class with Abstract Method

• A class that has an abstract method must be
declared abstract

2/28/2018 CUNY | Brooklyn College 10

class Animal {

abstract void makeNoise();

}

abstract class Animal {

abstract void makeNoise();

}

Subclass an Abstract Class

• Concrete subclass

• A subclass may provide implementations for all
of the abstract methods in its parent class.

• Abstract subclass

• The subclass must also be declared abstract if it
does not provide implementation of all of the
abstract methods in its parent class.

2/28/2018 CUNY | Brooklyn College 11

Example: The Animal Kingdom

2/28/2018 CUNY | Brooklyn College 12

Animal

Feline Dove Whale

Cat Panther

Questions?

• Abstract class

• Abstract method

• The “Animal Kingdom” example in the
“Sample Programs” repository

2/28/2018 CUNY | Brooklyn College 13

Different Classes, Same
Behaviors

• Different classes, although vastly different,
may exhibit similar behavior

• Any communication devices can “transmit” and
“receive”

• Any vehicles can “move”

• Any objects can be “compared” to each other

• …..

2/28/2018 CUNY | Brooklyn College 14

Interfaces

• Not the “interface” in “Graphical User Interface”

• Java has a reference type, called interface

• Typically contain abstract methods only.

• Java 8 introduces the concept of default methods and permits
static methods (abstract methods with default implementation)

• Interfaces are abstract classes, cannot be instantiated

• can only be implemented by classes or extended by other
interfaces

• “implements” and “extends” are two distinct Java terms

• A class “implements” an interface

2/28/2018 CUNY | Brooklyn College 15

Example: The Animal Kingdom
Enhanced

• Different animals have different motions

• Birds Fly

• Whales Swim

• And Cats ...

2/28/2018 CUNY | Brooklyn College 16

Example: The Animal Kingdom

2/28/2018 CUNY | Brooklyn College 17

Animal

Feline Dove Whale

Cat Panther

Interface
FelineMotion

Interface
BirdMotion

Interface
WhaleMotion

Example: Birds Fly, Whales
Swim, and Cats ...
public interface BirdMotion {

public void fly(Direction direction, double speed, double distance);

}

public interface WhaleMotion {

public void swim(Direction direction, double speed, double distance);

}

public interface FelineMotion {

public void walk(Direction direction, double speed, double distance);

public void pounce(Animal prey);

}

2/28/2018 CUNY | Brooklyn College 18

Example: Implementing
Interfaces
abstract class Feline implements FelineMotion {

…

public void walk(Direction direction, double speed, double distance) { … }

public void pounce(Animal prey) { … }

…

}

class Dove extends Animal implements BirdMotion { …

public void fly(Direction direction, double speed, double distance) { … }

}

2/28/2018 CUNY | Brooklyn College 19

Questions?

• Interfaces

• Why?

• How?

2/28/2018 CUNY | Brooklyn College 20

Using Interface as Type

• Interfaces are data types

void flyAll(ArrayList<BirdMotion> flyingAnimals) {

…

}

Void moveBird(BirdMotion bird) {

}

2/28/2018 CUNY | Brooklyn College 21

Evolving Interfaces

• Interfaces can be extended (like classes)

interface CatMotion extends FelineMotion {

public void tap(Animal animal) ;

}

2/28/2018 CUNY | Brooklyn College 22

Example: Extending
FelineMotion

2/28/2018 CUNY | Brooklyn College 23

Animal

Feline Dove Whale

Cat Panther

Interface
FelineMotion

Interface
BirdMotion

Interface
WhaleMotion

Interface
CatMotion

interface CatMotion extends FelineMotion {

public void tap(Animal animal) ;

}

Implementing Multiple
Interfaces

• A class can implement multiple interfaces

• But a class cannot extend multiple classes

• Which one of the following are is allowed in
Java?

2/28/2018 CUNY | Brooklyn College 24

class FlyingCat extends
Cat, Dove {

…

}

class FlyingCat implements
BirdMotion, CatMotion {

…

}

class FlyingCat extends
Feline implements
BirdMotion, CatMotion {

…

}

Implementing Multiple
Interfaces

• A class can implement multiple interfaces

• But a class cannot extend multiple classes

2/28/2018 CUNY | Brooklyn College 25

class FlyingCat extends
Cat, Dove {

…

}

class FlyingCat implements
BirdMotion, CatMotion {

…

}

class FlyingCat extends
Feline implements
BirdMotion, CatMotion {

…

}

Example: Flying Cat in the Magic
Kingdom

2/28/2018 CUNY | Brooklyn College 26

Animal

Feline Dove Whale

Cat Panther

Interface
FelineMotion

Interface
BirdMotion

Interface
WhaleMotion

Interface
CatMotion

FlyingCat

Questions

• Interfaces

• Model common behaviors

• Have only abstract methods

• Since Java 8, can have default methods and static methods
(virtual/abstract functions/methods with default
implementations)

• Are data types

• Can be extended

• Must be implemented

• The “Animal Kingdom Enhanced” in the “Sample Programs”
repo

2/28/2018 CUNY | Brooklyn College 27

What an object can do?

• The class hierarchy presents a problem

• What data type are we dealing with?

• As a programmer how do we cope with it?

• Use appropriate data types by design (preferred)

void flyAll(ArrayList<BirdMotion> flyingAnimals) {

…

}

• Check object type at runtime

• Using instanceof

• Using Class.isInstance()

• Using Class.isAssignableFrom()

2/28/2018 CUNY | Brooklyn College 28

https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#isInstance-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#isAssignableFrom-java.lang.Class-

Operator instanceof

• Evaluates to true if the object is a given type;
false otherwise

• Must know at compilation time the data type
whether the object is instance of

void move(Animal animal) {

if (animal instanceof Cat) {

…

}

}

2/28/2018 CUNY | Brooklyn College 29

Method Class.isInstance()

• Evaluates to true if the object is the data type of another object;
false otherwise

• A a = new A(); B b = new B(); a.getClass().isInstance(b)

• is b an instance of A? True if any of the two scenarios in the graph

• Does not need to know at compilation time the data type whether the
object is instance of

void move(Animal animal) {

Cat garfield = new Cat();

if (animal.getClass().isInstance(garfield)) {

…

}

}

2/28/2018 CUNY | Brooklyn College 30

A

B

A

B

Method
Class.isAssignableFrom()

• A.isAssignableFrom(B)

• where B is a class

• Returns true if any of these two scenarios

2/28/2018 CUNY | Brooklyn College 31

A

B

A

B

Questions

• What is the object’s data type?

• instanceof

• Class.isInstance

• Class.isAssignableFrom

• The “Vehicles” in the “Sample Programs”
repo

2/28/2018 CUNY | Brooklyn College 32

Nested Class

• Inner class (Non-static nested class)

• Discussed in last class

• Static nested class

• Discussed in last class

• Local class

• Anonymous class

• Functional interface and Lamba expression

2/28/2018 CUNY | Brooklyn College 33

Local Class

• Classes defined within a block

• What between a pair of balanced braces ({ … })

• A block can be used anywhere a single statement
is allowed.

2/28/2018 CUNY | Brooklyn College 34

class OuterClass {
...

{ …
class NestedClass { ... }
…

}
….

}

Local Class: Characteristics

• Local classes are similar to inner classes

• A local class has access to the members of its enclosing class.

• In addition, a local class has access to final or effectively final local
variables

• Final variables: e.g., final int a;

• Effectively final, e.g., int a = 1; but variable “a” never changes after
initialization

• It can access the method’s parameters

• However,

• cannot declare static initializers or member interfaces in a local class.

• can only have static members only when they are constants (final static …)

2/28/2018 CUNY | Brooklyn College 35

Anonymous Class

• Essentially, a local class without a name

• Created by declaring and instantiating a
class at the same time

• Use it when need a local class only once

2/28/2018 CUNY | Brooklyn College 36

class OuterClass {
...

{ …
ParentClass a = new ParentClass() { …}

}
…

}

Anonymous Classes are Local
Classes
• It has access to the members of its enclosing class.

• In addition, it has access to final or effectively final local
variables

• Final variables: e.g., final int a;

• Effectively final, e.g., int a = 1; but variable “a” never changes after
initialization

• It can access the method’s parameters

• However,

• cannot declare static initializers or member interfaces in a local class.

• can only have static members only when they are constants (final static
…)

2/28/2018 CUNY | Brooklyn College 37

Nested Classes and Java API

• Many Java API methods have interface parameters

• Comparators, Predicate, …

• Commonly used with nested classes (most often, anonymous classes)

• Examples:

• java.util.Arrays: binarySearch(T[] a, T key, Comparator<? super T> c)

• java.util.ArrayList: sort(Comparator<? super E> c)

• java.util.ArrayList: removeIf(Predicate<? super E> filter)

• java.util.Collections: binarySearch(List<? extends T> list, T key,
Comparator<? super T> c)

• java.util.Collections: removeIf(Predicate<? super E> filter)

2/28/2018 CUNY | Brooklyn College 38

Functional Interface

• Any interface that contains only one
abstract method

• Since Java 8, a functional interface may contain
one or more default methods or static methods

2/28/2018 CUNY | Brooklyn College 39

Use Functional Interface

• In your own design, sometime functional
interface is better choice

• More often, you use functional interfaces
because some Java API methods require
them

• Examples:

• https://docs.oracle.com/javase/8/docs/api/java/util/f
unction/package-summary.html

2/28/2018 CUNY | Brooklyn College 40

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html

Functional Interface and
Anonymous Class
• You can declare and instantiate a local class, or more often an

anonymous class

• Example

ArrayList<Person> personList = new ArrayList<Person>();

Arrays.sort(personList, new Comparator<Person> {

@Override

public int compare(Person lhs, Person rhs) {

// buggy (what if rhs is null?)

return lhs.getName().compareTo(rhs.getName());

}

}

2/28/2018 CUNY | Brooklyn College 41

Lambda Expression

• A simple way to declare and instantiate a class

2/28/2018 CUNY | Brooklyn College 42

ArrayList<Person> personList = new ArrayList<Person>();
Arrays.sort(personList, new Comparator<Person> {

@Override
public int compare(Person lhs, Person rhs) {

// buggy (what if rhs is null?)
return lhs.getName().compareTo(rhs.getName());

}
}

ArrayList<Person> personList = new ArrayList<Person>();
Arrays.sort(personList, (lhs, rhs) -> lhs.getName().compareTo(rhs.getName())}

Questions

• Nested classes

• Nested classes in Java API

• Lambda expression

• The “Nested Class Example” in the “Sample
Programs” repo

2/28/2018 CUNY | Brooklyn College 43

Inheritance, Generic
Programming, and Java API

• Commonly seen these in Java API

• <? extends E>

• Any data type that is of data type E or a sub-type of E

• <? super E>

• Any data type that is of data type E or a super-type of
E

• Discuss more in the future

2/28/2018 CUNY | Brooklyn College 44

Recall: The Object Super Class

• Java has a class called Object, like

• All classes are subclass of Object in Java

2/28/2018 CUNY | Brooklyn College 45

Object

boolean equals()
Class getClass()
int hasCode()

String toString()
…

Questions

• A few items commonly seen in Java API

• The Java Object class

2/28/2018 CUNY | Brooklyn College 46

Assignment

• Practice Assignment

• CodeLab

2/28/2018 CUNY | Brooklyn College 47

