
CISC 3120

C08: Inheritance and
Polymorphism

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/26/2018 1CUNY | Brooklyn College

Outline

• Recap and issues

• Project progress? Practice assignments? CodeLab?

• Review guide #1? Test #1?

• Automated unit testing?

• Inheritance

• Access control, getters & setters

• Java platform class hierarchy

• Polymorphism via inheritance

• Type casting

• Some discussion on nested classes

• Assignments

2/26/2018 CUNY | Brooklyn College 2

Recap: Testing

“Programmers are not to be measured by
their ingenuity and their logic but by the
completeness of their case analysis. “

-- Alan Perlis

2/26/2018 CUNY | Brooklyn College 3

Recap: Unit Testing

• Automated unit tests

• White-box tests

• Test coverage (related to case analysis)

• Separate application logic from tests

• Automate tests

• JUnit

• A unit testing framework for Java

2/26/2018 CUNY | Brooklyn College 4

Questions?

• Recap and issues

• Project progress?

• Practice assignments?

• CodeLab?

• Review guide #1?

• Test #1?

• Automated unit testing?

2/26/2018 CUNY | Brooklyn College 5

Class and Type

• A class defines a type, and often models a
set of entities

• To build a system for managing business at
Brooklyn College, we consider

• People, a set of individuals (objects), modeled as
a class that defines the set of objects

2/26/2018 CUNY | Brooklyn College 6

People at Brooklyn College

Subtypes

• Some people at Brooklyn are different from
the others in some way

• Professors and students are subtypes of
Brooklyn College People

2/26/2018 CUNY | Brooklyn College 7

People at Brooklyn College

Professors Students

Type Hierarchy

• Characteristics and behavior

• What are Students and Professors in common?

• What are Students and Professors different?

2/26/2018 CUNY | Brooklyn College 8

People at Brooklyn
College

Professors Students

What’s in common?

• What characteristics (attributes) and
behavior (actions) do People at Brooklyn
College have in common?

• Characteristics (attributes, fields, or states):
name, ID, address, email, phone, …

• Behavior (actions, functions, or methods): change
address, apply parking, …

2/26/2018 CUNY | Brooklyn College 9

What’s Special?

• What’s distinct about students?

• Characteristics (attributes, fields, or states): classes
taken, tuition and fees, …

• Behavior (actions, functions, or methods): add class,
drop class, pay tuition, …

• What’s distinct about professors?

• Characteristics (attributes, fields, or states): course
taught, rank, title, …

• Behavior (actions, functions, or methods): register
grade, apply promotion, …

2/26/2018 CUNY | Brooklyn College 10

Inheritance & Type Hierarchy

• A subtype (child) inherits characteristics
(attributes) and behavior (actions) of its
base type (parent)

2/26/2018 CUNY | Brooklyn College 11

People at Brooklyn
College

Professors Students

- Name, ID, address,
phone, …

- Change address,
apply parking …

- Class taken, …
- Add class, …

- Class taught, …
- Register grades, …

Questions

• Concepts

• Type, subtype, class, subclass

• Inheritance

2/26/2018 CUNY | Brooklyn College 12

Terms of Choice

• Terms

• Super type, Super class

• Base type, Base class

• Parent type, parent class

• Child type, child class

• Subtype, subclass

• …

• In Java, we sometimes consider “type” and “class” are slightly
different

• In Java, a pure abstract class is called an “interface” (to be
discussed in next class)

2/26/2018 CUNY | Brooklyn College 13

Questions?

• Terms

• Super type, Super class

• Base type, Base class

• Parent type, parent class

• Child type, child class

• Subtype, subclass

• …

2/26/2018 CUNY | Brooklyn College 14

Super Type (Super Class):
Person
public class Person {

protected String name;

protected String id;

protected String address;

public Person(String name, String id, String address) {

this.name = name; this.id = id; …

}

public void changeAddress(String address) { …

}

… }

2/26/2018 CUNY | Brooklyn College 15

Subtype (Subclass): Student

public Student extends Person {

private ArrayList<String> classesTaken;

public Student(String name, String id, String address) {

super(name, id, address);

classesTaken = new ArrayList<String>();

}

public void haveTakenClass(String className) { …

}

public void showClassesTaken() { …

}

…}
2/26/2018 CUNY | Brooklyn College 16

Subtype (Subclass): Professor

public class Professor extends Person {

private final static int SABATTICAL_LEAVE_INTERVAL = 7;

private int yearStarted;

public Professor(String name, String id, String address, int yearStarted) {

super(name, id, address);

this.yearStarted = yearStarted;

}

public void applySabbatical(int applicationYear) { …

}

…}

2/26/2018 CUNY | Brooklyn College 17

Control Access to Members

Modifier Class Package Subclass World

public Yes Yes Yes Yes

protected Yes Yes Yes No

(no modifier) Yes Yes No No

private Yes No No No

2/26/2018 CUNY | Brooklyn College 18

… protected String name; …

M
ore

 re
strictive

Choose Access Control Level

• Goal: you want to reduce the chances your class
is being misused. Access level is to help achieve
it.

• Use private unless you have a good reason not to.

• Use the most restrictive access level that makes
sense for a particular member.

• Avoid public fields except for constants. (Public
fields tend to link you to a particular implementation
and limit your flexibility in changing your code.)

2/26/2018 CUNY | Brooklyn College 19

Constructors

• Initialize attributes of an object when it is
being created (or instantiated)

• Subclass’s constructor

• Java will call the parent class’s default
constructor if you do not call one of parent’s
constructors explicitly.

• You may explicitly call it via “super(…)”.

2/26/2018 CUNY | Brooklyn College 20

… super(name, id, address); …

Override Methods in Super
Class: Methods
public class Person { ...

public String toString() {

return "Person (name=" + name + ", id=" + id + ", address=" + address + ")";

} …

}

2/26/2018 CUNY | Brooklyn College 21

public class Student extends Person { …

public String toString() {

return "Student (name=" + name + ", id=" + id + ", address=" + address

+ ", coursesTaken=[" + String.join(", ", classesTaken) + "])";

} …

}

Override Methods in Super
Class: Example

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Student adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

System.out.println (ben.toString());

System.out.println(adam.toString());

2/26/2018 CUNY | Brooklyn College 22

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
coursesTaken=[])

Questions

• Inheritance in Java

• Access control of class members

• Constructors

• Overriding methods

• A few other related items

• this, super

2/26/2018 CUNY | Brooklyn College 23

Getters and Setters

• Recall the design principle

• A class should have only a single responsibility and
responsible for its own behavior

• Objects interacts with only their methods

• How do we access the private members of a class?

• Getters and setters

• Getters: a method that returns the value of a restricted
variable

• Setters: a method that sets the value of a restricted variable

2/26/2018 CUNY | Brooklyn College 24

Getters and Setters: Example

• Observe the getter & setter naming convention

public class Boat {

private String name;

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

}

2/26/2018 CUNY | Brooklyn College 25

Getters and Setters: Using IDE

• Many IDEs can generate getters and setters
for you.

• Examples:

• In the Eclipse IDE, click the “Source” menu,
select “Generate Setters and Getters”

2/26/2018 CUNY | Brooklyn College 26

Generating Getters and Setters

2/26/2018 CUNY | Brooklyn College 27

Questions

• Getters and Setters

• Use IDEs to generate getters and setters

2/26/2018 CUNY | Brooklyn College 28

Polymorphism

• One type appears as and is used like another
type

• Example

• A Student object can be used in place of a
Person object.

• Inheritance is an approach to realize
polymorphism

2/26/2018 CUNY | Brooklyn College 29

Polymorphism: Example 1

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

System.out.println (ben.toString());

System.out.println(adam.toString());

2/26/2018 CUNY | Brooklyn College 30

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
coursesTaken=[])

Polymorphism: Example 2

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

display(ben); display(adam);

2/26/2018 CUNY | Brooklyn College 31

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
coursesTaken=[])

public static void display(Person person) {

System.out.println(person.toString());

}

How about Other Methods?

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Student adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

adam.haveTakenClass("CISC3120");

display(ben); display(adam);

2/26/2018 CUNY | Brooklyn College 32

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
coursesTaken=[CISC3120])

How about this example?

• You say, “adam” appears to be a “Student”
object.

2/26/2018 CUNY | Brooklyn College 33

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

adam.haveTakenClass("CISC3120");

display(ben); display(adam);

Error: The method haveTakenClass(String) is undefined for the type Person

Type Casting

• You can only invoke the method of declared
type, i.e., Person.

2/26/2018 CUNY | Brooklyn College 34

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

((Student)adam).haveTakenClass("CISC3120");

display(ben); display(adam);

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
coursesTaken=[CISC3120])

Actual Type and Declared Type

• Declared type: type at compilation time

• Actual type: type at runtime

• A variable may refer to an object of different
type at runtime

• Example: actual and declared types of “ben”, and
“adam”?

2/26/2018 CUNY | Brooklyn College 35

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

((Student)adam).haveTakenClass("CISC3120");

Type Casting

• Down-casting

• Cast to a subtype

• It is allowed when there is a possibility that it
succeeds at run time (e.g., type to be casted to
matches actual type)

• In the example, a “Person” object references to a
“Student” object, and the down casting is allowed.

• Up-casting

• Cast to a super type

• It is always allowed

2/26/2018 CUNY | Brooklyn College 36

Questions

• Polymorphism via inheritance in Java

• Type casting in Java

2/26/2018 CUNY | Brooklyn College 37

Design Consideration

• Composition vs. Inheritance

2/26/2018 CUNY | Brooklyn College 38

More Example: Boat, RowBoat …

• Both examples (Person-Student-Professor
and Boat-RowBoat) are in the “Sample
Program” repository on Github

2/26/2018 CUNY | Brooklyn College 39

Questions?

• Inheritance or composition?

2/26/2018 CUNY | Brooklyn College 40

Java Platform Class Hierarchy

• The java.lang.Object class is the ancestor of all
classes

• defines and implements behavior common to all classes

• Many classes derive directly from Object

• Other classes derive from some of those classes, and so
on, forming a hierarchy of classes.

2/26/2018 CUNY | Brooklyn College 41

The Objects class

• java.util.Objects

• Static utility methods for operating on
objects.

• Examples:

• null-safe or null-tolerant methods for computing the
hash code of an object,

• Methods that return a string for an object

• Methods that compare two objects.

2/26/2018 CUNY | Brooklyn College 42

Questions

• The Java Object and Objects classes

2/26/2018 CUNY | Brooklyn College 43

Nested Class

• Java permits one to define a class within
another class. Below are 2 of 4 types:

• Inner class (Non-static nested class)

• Static nested class

2/26/2018 CUNY | Brooklyn College 44

class OuterClass {
...
class NestedClass { ... }

}

class OuterClass {
...
static class StaticNestedClass { ... }

}

Using Nested Class

• Logically grouping classes that are only used in one
class

• Can increase encapsulation

• Can lead to more readable and maintainable code

2/26/2018 CUNY | Brooklyn College 45

class B {
int c;

}
class A { // B only used in A

B b = new B();
b.c = 2;

}

class A {
class B {

int c;
}
B b = new B();
b.c = 2;

}

Inner class

• An inner class is a member of the outer
class

• have access to other members of the enclosing
class, even if they are declared private.

• An inner class can be declared private, public,
protected, or package private.

• However, the outer classes can only be declared
public or package private

2/26/2018 CUNY | Brooklyn College 46

Inner Class: Member of Outer
Class

• An instance of the inner class is a part of an
instance of the outer class

• How about create an object of the inner class

2/26/2018 CUNY | Brooklyn College 47

Inner Class: Member of Outer
Class: Examples

• Which one is correct?

2/26/2018 CUNY | Brooklyn College 48

class A {
void method() {

B b = new B();
}
class B { // B only used in A
}

}

class A {
void method() {

B b = this.new B();
}
class B { // B only used in A
}

}

class A {
static void method() {

B b = new B();
}
class B { // B only used in A
}

}

class A {
static void method() {

A a = new A();
B b = a.new B();

}
class B { // B only used in A }

}

Inner Class: Member of Outer
Class: Examples

• Which one is correct?

2/26/2018 CUNY | Brooklyn College 49

class A {
void method() {

B b = new B();
}
class B { // B only used in A
}

}

class A {
void method() {

B b = this.new B();
}
class B { // B only used in A
}

}

class A {
static void method() {

B b = new B();
}
class B { // B only used in A
}

}

class A {
static void method() {

A a = new A();
B b = a.new B();

}
class B { // B only used in A }

}

Static Nested Class

• A static nested class is associated with its
outer class

• It belongs to the outer class, not to an object of
the outer class.

• Behaviorally a top-level class that has been
nested in another top-level class for packaging
convenience.

2/26/2018 CUNY | Brooklyn College 50

Static Nest Class: Examples

• Which one is correct or wrong?

2/26/2018 CUNY | Brooklyn College 51

class A {
void method() {

B b = new B();
}
static class B { // B only used in A }

}

class A {
void method() {

B b = new A.B();
}
static class B { // B only used in A }

}

class A {
static void method() {

B b = new B();
}
static class B { // B only used in A }

}

class A {
static void method() {

B b = new A.B();
}
static class B { // B only used in A }

}

Static Nest Class: Examples

• Which one is correct or wrong?

2/26/2018 CUNY | Brooklyn College 52

class A {
void method() {

B b = new B();
}
static class B { // B only used in A }

}

class A {
void method() {

B b = new A.B();
}
static class B { // B only used in A }

}

class A {
static void method() {

B b = new B();
}
static class B { // B only used in A }

}

class A {
static void method() {

B b = new A.B();
}
static class B { // B only used in A }

}

Questions?

• Nested classes

• Inner class

• Static nested class

2/26/2018 CUNY | Brooklyn College 53

Assignments

• Practice Assignment

• CodeLab

2/26/2018 CUNY | Brooklyn College 54

