CISC 3120
C0O8: Inheritance and

Polymorphism

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Outline

Recap and issues

* Project progress? Practice assignments? Codelab?
« Review guide #1? Test #1?

« Automated unit testing?
 Inheritance
« Access control, getters & setters
« Java platform class hierarchy
* Polymorphism via inheritance
« Type casting
« Some discussion on nested classes
* Assignments

Recap: Testing

"Programmers are not to be measured by
8¢ their ingenuity and their logic but by the
e completeness of their case analysis. "

-- Alan Perlis

2/26/2018 CUNY | Brooklyn College 3

Recap: Unit Testing

« Automated unit tests
« White-box tests
 Test coverage (related to case analysis)
* Separate application logic from tests
* Automate tests
» JUnit

* A unit testing framework for Java

Questions?

* Recap and issues
* Project progress?
* Practice assignments?
 CodelLab?
* Review guide #1?
« Test #1?

« Automated unit testing?

Class and Type

* A class defines a type, and often models a
set of entities

* To build a system for managing business at
Brooklyn College, we consider

* People, a set of individuals (objects), modeled as
a class that defines the set of objects

People at Brooklyn College

2/26/2018 CUNY | Brooklyn College

Subtypes

« Some people at Brooklyn are different from
the others in some way

* Professors and students are subtypes of
Brooklyn College People

Professors Students

People at Brooklyn College

2/26/2018 CUNY | Brooklyn College

Type Hierarchy

e Characteristics and behavior

« What are Students and Professors in common?

 What are Students and Professors different?

People at Brooklyn
College

Professors Students

2/26/2018 CUNY | Brooklyn College

What's in common?

 What characteristics (attributes) and
behavior (actions) do People at Brooklyn
College have in common?

 Characteristics (attributes, fields, or states):
name, ID, address, email, phone, ...

* Behavior (actions, functions, or methods): change
address, apply parking, ...

What's Special?

 What's distinct about students?

« Characteristics (attributes, fields, or states): classes
taken, tuition and fees, ...

« Behavior (actions, functions, or methods): add class,
drop class, pay tuition, ...

* What's distinct about professors?

« Characteristics (attributes, fields, or states): course
taught, rank, title, ...

« Behavior (actions, functions, or methods): register
grade, apply promotion, ...

Inheritance & Type Hierarchy

* A subtype (child) inherits characteristics
(attributes) and behavior (actions) of its

P

bGSe Type (par‘en'l') - Name, ID, address,
_ p:one, ...dd
- C)
People at Brooklyn ange aueress
apply parking ...
College
- Class taught, ... ©
- Register grades, ... Y "?‘@,)
%

Q<
&
<

- Class taken, ...
Professors - Add class, } Students

2/26/2018 CUNY | Brooklyn College

|

Questions

* Concepts

 Type, subtype, class, subclass

e ITnheritance

Terms of Choice

e Terms

* Super type, Super class

Base type, Base class

Parent type, parent class
Child type, child class
Subtype, subclass

 In Java, we sometimes consider "type" and “class” are slightly
different

« In Java, a pure abstract class is called an “interface” (to be
discussed in next class)

Questions?

* Terms
* Super type, Super class
* Base type, Base class
* Parent type, parent class
» Child type, child class
 Subtype, subclass

Super Type (Super Class):
Person

public class Person {
protected String name;
protected String id;
protected String address;
public Person(String name, String id, String address) {
this.name = name; this.id = id; ..

}
public void changeAddress(String address) { ...

}

Subtype (Subclass): Student

public Student extends Person {
private ArrayList<String> classesTaken;
public Student(String name, String id, String address) {
super(name, id, address);
classesTaken = new ArrayList<String>();
}

public void haveTakenClass(String className) { ...

}

public void showClassesTaken() { ...

}

Subtype (Subclass): Professor

public class Professor extends Person {
private final static int SABATTICAL_LEAVE_INTERVAL = 7;
private int yearStarted;
public Professor(String name, String id, String address, int yearStarted) {
super(name, id, address);
this.yearStarted = yearStarted;

}
public void applySabbatical(int applicationYear) { ...

}

Control Access to Members

— .y

~

/—" pr'o’rec‘red String name;

public Yes Yes Yes Yes %
®
®

protected Yes Yes Yes No <
=
=
=

(no modifier) Yes Yes No No 3

private Yes No No No

2/26/2018 CUNY | Brooklyn College 18

Choose Access Control Level

* Goal: you want to reduce the chances your class
is being misused. Access level is to help achieve

It
« Use private unless you have a good reason not to.

« Use the most restrictive access level that makes
sense for a particular member.

» Avoid public fields except for constants. (Public
fields tend to link you to a particular implementation
and limit your flexibility in changing your code.)

Constructors

* Initialize attributes of an object when it is
being created (or instantiated)

e Subclass's constructor

constructor if you do not call one/of parent’s
constructors explucn‘rly ’

* You may expllchly call |’r wa super‘()

—————

——————

Override Methods in Super
Class: Methods

public class Person { ...
public String toString() {

return "Person (name=" + name + ", id=" + id + ", address=" + address + ")";

public class Student extends Person { ...
public String toString() {
return "Student (hame=" + name + ", id=" + id + ", address=" + address

+", coursesTaken=[" + String.join(", ", classesTaken) + "1)";

}

2/26/2018 CUNY | Brooklyn College

21

Override Methods in Super
Class: Example

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");
Student adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");
System.out.printin (ben.toString()):

System.out.println(adam.toString()):

¥

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
coursesTaken=[])

2/26/2018 CUNY | Brooklyn College 22

Questions

* Inheritance in Java

« Access control of class members
» Constructors

* Overriding methods

* A few other related items

« this, super

Getters and Setters

* Recall the design principle

* A class should have only a single responsibility and
responsible for its own behavior

« Objects interacts with only their methods
« How do we access the private members of a class?

e Getters and setters

« Getters: a method that returns the value of a restricted
variable

« Setters: a method that sets the value of a restricted variable

Getters and Setters: Example

« Observe the getter & setter naming convention
public class Boat {
private String name;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}

Getters and Setters: Using IDE

* Many IDEs can generate getters and setters
for you.

« Examples:

 In the Eclipse IDE, click the "Source” menu,
select "Generate Setters and Getters”

.

pll

Source Refactor

Generating Getters and Setters

MNavigate Search Project Run Window H

. |

Toggle Comment

Add Block Comment J] SeveralHorsesNotSoGreatAppjava [l Horsel @& Generate Getters and Setters n w oL
Remave Block Comment | package edu.cuny.brooklyn.oop: i
Generate Element Comme . Select getters and setters to create: |
Shift Right 3 public class Equidae {
Shitt Left 4 private int numberOfToes; |:| o gender Select All
T [Tl private String name; D o numberOfToes
6 private String gender; [] ORDER Deselect All

Format 7
Format Ele 8 public final String ORDER = "¢ Select Getters 3
Add Impo 9 _ _ T
Organize 10< public Equidae(String name, St []Allow setters for final fields (remove ‘final' modifier from fields if necessary) In
Sort Mo 11 this.name = name; . - i
Clean U 12 this.gender = gender; LRI LI P

can e 13 this.numberOfToes = number | First member v e
Override/Implement Meth :4 } Sort by: I
Generate Getters and Sett: 15 |
Generate Delegate Metho 16€ public String getName() { Fields in getter/setter pairs Y

4~ . |

Generate' @ ! y return name; Access modifier |
Generate to @ public (O protected () package (O private <
Generate Constructor usin N etMame(String nan [Ifinal [1synchronized ‘
Generate Constructors fro this . name = name; !
Surround With [] Generate method comments ‘
Externalize Strings_ Problems Javadoc Declaration Bl Consa The format of the getters/setters may be configured on the Code Templates preference page. R

Fi I 4
nd Broken Externalized “terminated = SeveralHorsesNotSoGreatApp [Java A

lorse major is 13 years old.
lorse khan is 19 years old.
ty horse is really smart.
There’s so much he can do.

la lrnawe howa +0 rhon rarentc

2/26/2018

@

CUNY | Brooklyn College

OK Cancel

27

Questions

« Getters and Setters
« Use IDEs to generate getters and setters

Polymorphism

* One type appears as and is used like another
Type
« Example

* A Student object can be used in place of a
Person object.

* Inheritance is an approach to realize
polymorphism

Polymorphism: Example 1

System.out.printin (ben.toString()):
System.out.println(adam.toString()):

¥

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
coursesTaken=[])

2/26/2018 CUNY | Brooklyn College

30

Polymorphism: Example 2

public static void display(Person person) {

System.out.printin(person.toString());

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");
Person adam = new Student("Adam Smith", "'00248", "2902 Bedford Ave");

display(ben); display(adam);

¥

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
courses Taken=[])

2/26/2018 CUNY | Brooklyn College

31

How about Other Methods?

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");
Student adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");
adam.haveTakenClass("CISC3120");

display(ben); display(adam);

¥

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
courses Taken=[CISC3120])

2/26/2018 CUNY | Brooklyn College 32

How about this example?

* You say, "adam” appears to be a "Student”
object.

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

-
-

dusplay(ben) d|splay(adam)

Error: The method haveTakenClass(String) is undefined for the type Person

Type Casting

* You can only invoke the method of declared
type, i.e., Person.

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

((Student)adam).have TakenClass("CISC3120"):
display(ben); display(adam);

>

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
courses Taken=[CISC3120])

2/26/2018 CUNY | Brooklyn College

34

Actual Type and Declared Type

* Declared type: type at compilation time
 Actual type: type at runtime

* A variable may refer to an object of different
Type at runtime

« Example: actual and declared types of "ben”, and
“adam"?

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");
Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");
((Student)adam).have TakenClass("CISC3120");

Type Casting

» Down-casting
* Cast to a subtype

« It is allowed when there is a possibility that it
succeeds at run time (e.g., type to be casted to
matches actual type)

« In the example, a "Person” object references to a
"Student” object, and the down casting is allowed.

* Up-casting
 Cast to a super type
« Tt is always allowed

Questions

* Polymorphism via inheritance in Java

» Type casting in Java

Design Consideration

» Composition vs. Inheritance

More Example: Boat, RowBoat ...

* Both examples (Person-Student-Professor
and Boat-RowBoat) are in the "Sample
Program” repository on Github

Questions?

* Inheritance or composition?

Java Platform Class Hierarchy

* The java.lang.Object class is the ancestor of all
classes

« defines and implements behavior common to all classes
* Many classes derive directly from Object

« Other classes derive from some of those classes, and so
on, forming a hierarchy of classe~ | ..

@ =

= ogs N

Ml : ol el @
|

The Objects class

- java.util.Objects

» Static utility methods for operating on
objects.

« Examples:

* null-safe or null-tolerant methods for computing the
hash code of an object,

* Methods that return a string for an object

* Methods that compare two objects.

Questions

* The Java Object and Objects classes

Nested Class

 Java permits one to define a class within
another class. Below are 2 of 4 types:

* Inner class (Non-static nested class)

class OutercClass {

glass NestedClass { ... }

}

e Static nested class

class OuterClass {

static class StaticNestedClass { ... }

}

Using Nested Class

* Logically grouping classes that are only used in one
class

* Can increase encapsulation

e Can lead to more readable and maintainable code

class B { class A {
int c; class B {
} int c;
class A {// B only used in A }
B b = new B(); B b = new B();
b.c=2; b.c = 2;
} }

Tnner class

* An inner class is a member of the outer
class

* have access to other members of the enclosing
class, even if they are declared private.

* An inner class can be declared private, public,
protected, or package private.

« However, the outer classes can only be declared
public or package private

Inner Class: Member of Outer
Class

» An instance of the inner class is a part of an
instance of the outer class

* How about create an object of the inner class

Inner Class: Member of Outer
Class: Examples

« Which one is correct?

class A {
void method() {
B b = new B();
}
class B{// B only used in A

}

class A {
void method() {
B b = this.new B();

}
class B{// B only used in A

}

}

}

} }
class A { class A {
static void method() { static void method() {
B b = new B(); A a = new A();
} B b = a.new B();
class B{// Bonly used in A }

class B{// BonlyusedinA }
}

2/26/2018

CUNY | Brooklyn College

48

Inner Class: Member of Outer
Class: Examples

« Which one is correct?

class A {
void method() {
B b = new B();
}
class B{// B only used in A

}

class A {
void method() {
B b = this.new B();

}
class B{// B only used in A

}

}

}

} }
class A { class A {
static void method() { static void method() {
B b = new B(); A a = new A();
} B b = a.new B();
class B{// Bonly used in A }

class B{// BonlyusedinA }
}

2/26/2018

X

CUNY | Brooklyn College

v

49

Static Nested Class

* A static nested class is associated with its
outer class

» It belongs to the outer class, not to an object of
the outer class.

* Behaviorally a top-level class that has been
nested in another top-level class for packaging
convenience.

Static Nest Class: Examples

« Which one is correct or wrong?

class A { class A {
void method() { void method() {
B b = new B(); B b = new A.B();
} }
static class B{// B only used in A } static class B{// B only used in A }
} }
class A { class A {
static void method() { static void method() {
B b = new B(); B b = new A.B();
} }
static class B{// B only used in A } static class B{// B only used in A }
} }
2/26/2018 CUNY | Brooklyn College 51

Static Nest Class: Examples

« Which one is correct or wrong?

class A { class A {
void method() { void method() {
B b = new B(); B b = new A.B();
} }
static class B{// B only used in A } static class B{// B only used in A }
} }
class A { class A {
static void method() { static void method() {
B b = new B(); B b = new A.B();
} }
static class B{// B only used in A static class B{// B only used in A }
} }
2/26/2018 CUNY | Brooklyn College 52

Questions?

* Nested classes
 Tnner class

« Static nested class

Assignments

* Practice Assignment
* Codelab

