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Outline

• Recap and issues

• Project progress? Practice assignments? CodeLab?

• Review guide #1? Test #1?
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• Access control, getters & setters

• Java platform class hierarchy

• Polymorphism via inheritance

• Type casting

• Some discussion on nested classes

• Assignments
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Recap: Testing

“Programmers are not to be measured by 
their ingenuity and their logic but by the 
completeness of their case analysis. “

-- Alan Perlis
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Recap: Unit Testing

• Automated unit tests

• White-box tests

• Test coverage (related to case analysis)

• Separate application logic from tests

• Automate tests 

• JUnit

• A unit testing framework for Java
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Questions?

• Recap and issues

• Project progress?

• Practice assignments?

• CodeLab?

• Review guide #1?

• Test #1?

• Automated unit testing?
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Class and Type

• A class defines a type, and often models a 
set of entities

• To build a system for managing business at 
Brooklyn College, we consider

• People, a set of individuals (objects), modeled as 
a class that defines the set of objects
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People at Brooklyn College



Subtypes

• Some people at Brooklyn are different from 
the others in some way

• Professors and students are subtypes of 
Brooklyn College People 
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People at Brooklyn College

Professors Students



Type Hierarchy

• Characteristics and behavior

• What are Students and Professors in common? 

• What are Students and Professors different?
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People at Brooklyn 
College

Professors Students



What’s in common?

• What characteristics (attributes) and 
behavior (actions) do People at Brooklyn 
College have in common?

• Characteristics (attributes, fields, or states): 
name, ID, address, email, phone, …

• Behavior (actions, functions, or methods): change 
address, apply parking, …
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What’s Special? 

• What’s distinct about students?

• Characteristics (attributes, fields, or states): classes 
taken, tuition and fees, …

• Behavior (actions, functions, or methods): add class, 
drop class, pay tuition, …

• What’s distinct about professors?

• Characteristics (attributes, fields, or states): course 
taught, rank, title, …

• Behavior (actions, functions, or methods): register 
grade, apply promotion, …
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Inheritance & Type Hierarchy

• A subtype (child) inherits characteristics 
(attributes) and behavior (actions) of its 
base type (parent)
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People at Brooklyn 
College

Professors Students

- Name, ID, address, 
phone, …

- Change address, 
apply parking …

- Class taken, …
- Add class, …

- Class taught, …
- Register grades, …



Questions

• Concepts

• Type, subtype, class, subclass

• Inheritance

2/26/2018 CUNY | Brooklyn College 12



Terms of Choice

• Terms

• Super type, Super class

• Base type, Base class

• Parent type, parent class

• Child type, child class

• Subtype, subclass

• …

• In Java, we sometimes consider “type” and “class” are slightly 
different

• In Java, a pure abstract class is called an “interface” (to be 
discussed in next class)
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Questions?

• Terms

• Super type, Super class

• Base type, Base class

• Parent type, parent class

• Child type, child class

• Subtype, subclass

• …
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Super Type (Super Class): 
Person
public class Person {

protected String name;

protected String id;

protected String address;     

public Person(String name, String id, String address) {

this.name = name;  this.id = id;  …

}

public void changeAddress(String address) {  …

}

… }
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Subtype (Subclass): Student

public Student extends Person {

private ArrayList<String> classesTaken; 

public Student(String name, String id, String address) {

super(name, id, address);

classesTaken = new ArrayList<String>();

}

public void haveTakenClass(String className) { …

}

public void showClassesTaken() { …

}

…}
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Subtype (Subclass): Professor

public class Professor extends Person {

private final static int SABATTICAL_LEAVE_INTERVAL = 7;

private int yearStarted;

public Professor(String name, String id, String address, int yearStarted) {

super(name, id, address);

this.yearStarted = yearStarted;

}

public void applySabbatical(int applicationYear) { …

}

…}
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Control Access to Members

Modifier Class Package Subclass World

public Yes Yes Yes Yes

protected Yes Yes Yes No

(no modifier) Yes Yes No No

private Yes No No No
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… protected String name; …

M
ore

 re
strictive



Choose Access Control Level

• Goal: you want to reduce the chances your class 
is being misused. Access level is to help achieve 
it.

• Use private unless you have a good reason not to.

• Use the most restrictive access level that makes 
sense for a particular member. 

• Avoid public fields except for constants. (Public 
fields tend to link you to a particular implementation 
and limit your flexibility in changing your code.)
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Constructors

• Initialize attributes of an object when it is 
being created (or instantiated)

• Subclass’s constructor

• Java will call the parent class’s default 
constructor if you do not call one of parent’s 
constructors explicitly.

• You may explicitly call it via “super(…)”.
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… super(name, id, address); …



Override Methods in Super 
Class: Methods
public class Person { ...

public String toString() {

return "Person (name=" + name + ", id=" + id + ", address=" + address + ")";

} …

}
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public class Student extends Person { …

public String toString() {

return "Student (name=" + name + ", id=" + id + ", address=" + address 

+ ", coursesTaken=[" + String.join(", ", classesTaken) + "])";    

} …

}



Override Methods in Super 
Class: Example

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Student adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

System.out.println (ben.toString());

System.out.println(adam.toString());
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Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave, 
coursesTaken=[])



Questions

• Inheritance in Java

• Access control of class members

• Constructors

• Overriding methods

• A few other related items

• this, super
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Getters and Setters

• Recall the design principle

• A class should have only a single responsibility and 
responsible for its own behavior

• Objects interacts with only their methods

• How do we access the private members of a class? 

• Getters and setters

• Getters: a method that returns the value of a restricted 
variable

• Setters: a method that sets the value of a restricted variable 
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Getters and Setters: Example

• Observe the getter & setter naming convention

public class Boat {

private String name;

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

}
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Getters and Setters: Using IDE

• Many IDEs can generate getters and setters 
for you.

• Examples:

• In the Eclipse IDE, click the “Source” menu, 
select “Generate Setters and Getters”
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Generating Getters and Setters
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Questions

• Getters and Setters

• Use IDEs to generate getters and setters
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Polymorphism

• One type appears as and is used like another 
type

• Example

• A Student object can be used in place of a 
Person object. 

• Inheritance is an approach to realize 
polymorphism
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Polymorphism: Example 1

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

System.out.println (ben.toString());

System.out.println(adam.toString());
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Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave, 
coursesTaken=[])



Polymorphism: Example 2

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

display(ben); display(adam);
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Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave, 
coursesTaken=[])

public static void display(Person person) {

System.out.println(person.toString());

}



How about Other Methods?

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Student adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

adam.haveTakenClass("CISC3120");

display(ben); display(adam);
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Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave, 
coursesTaken=[CISC3120])



How about this example?

• You say, “adam” appears to be a “Student” 
object.
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Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

adam.haveTakenClass("CISC3120");

display(ben); display(adam);

Error: The method haveTakenClass(String) is undefined for the type Person



Type Casting

• You can only invoke the method of declared 
type, i.e., Person.
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Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

((Student)adam).haveTakenClass("CISC3120");

display(ben); display(adam);

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave, 
coursesTaken=[CISC3120])



Actual Type and Declared Type

• Declared type: type at compilation time

• Actual type: type at runtime

• A variable may refer to an object of different 
type at runtime

• Example: actual and declared types of “ben”, and 
“adam”?
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Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

((Student)adam).haveTakenClass("CISC3120");



Type Casting

• Down-casting

• Cast to a subtype 

• It is allowed when there is a possibility that it 
succeeds at run time (e.g., type to be casted to 
matches actual type)

• In the example, a “Person” object references to a 
“Student” object, and the down casting is allowed.

• Up-casting

• Cast to a super type

• It is always allowed
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Questions

• Polymorphism via inheritance in Java

• Type casting in Java
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Design Consideration

• Composition vs. Inheritance
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More Example: Boat, RowBoat …

• Both examples (Person-Student-Professor 
and Boat-RowBoat) are in the “Sample 
Program” repository on Github
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Questions?

• Inheritance or composition?
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Java Platform Class Hierarchy

• The java.lang.Object class is the ancestor of all 
classes

• defines and implements behavior common to all classes

• Many classes derive directly from Object

• Other classes derive from some of those classes, and so 
on, forming a hierarchy of classes.
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The Objects class

• java.util.Objects

• Static utility methods for operating on 
objects. 

• Examples:

• null-safe or null-tolerant methods for computing the 
hash code of an object, 

• Methods that return a string for an object

• Methods that compare two objects.
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Questions

• The Java Object and Objects classes
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Nested Class

• Java permits one to define a class within 
another class. Below are 2 of 4 types:

• Inner class (Non-static nested class)

• Static nested class
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class OuterClass {
...
class NestedClass {   ...   }

}

class OuterClass {
...
static class StaticNestedClass {  ...   }

}



Using Nested Class

• Logically grouping classes that are only used in one 
class

• Can increase encapsulation

• Can lead to more readable and maintainable code
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class B {
int c;

}
class A { // B only used in A

B b = new B();
b.c = 2;

}

class A {
class B {

int c;
}
B b = new B();
b.c = 2;

}



Inner class

• An inner class is a member of the outer 
class

• have access to other members of the enclosing 
class, even if they are declared private. 

• An inner class can be declared private, public, 
protected, or package private. 

• However, the outer classes can only be declared 
public or package private
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Inner Class: Member of Outer 
Class

• An instance of the inner class is a part of an 
instance of the outer class

• How about create an object of the inner class 
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Inner Class: Member of Outer 
Class: Examples

• Which one is correct?
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class A {
void method() {

B b = new B();
}
class B { // B only used in A
}

}

class A {
void method() {

B b = this.new B();
}
class B { // B only used in A
}

}

class A {
static void method() {

B b = new B();
}
class B { // B only used in A
}

}

class A {
static void method() {

A a = new A();
B b = a.new B();

}
class B { // B only used in A  }

}



Inner Class: Member of Outer 
Class: Examples

• Which one is correct?
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class A {
void method() {

B b = new B();
}
class B { // B only used in A
}

}

class A {
void method() {

B b = this.new B();
}
class B { // B only used in A
}

}

class A {
static void method() {

B b = new B();
}
class B { // B only used in A
}

}

class A {
static void method() {

A a = new A();
B b = a.new B();

}
class B { // B only used in A  }

}



Static Nested Class

• A static nested class is associated with its 
outer class

• It belongs to the outer class, not to an object of 
the outer class.

• Behaviorally a top-level class that has been 
nested in another top-level class for packaging 
convenience.
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Static Nest Class: Examples

• Which one is correct or wrong?
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class A {
void method() {

B b = new B();
}
static class B { // B only used in A }

}

class A {
void method() {

B b = new A.B();
}
static class B { // B only used in A }

}

class A {
static void method() {

B b = new B();
}
static class B { // B only used in A }

}

class A {
static void method() {

B b = new A.B();
}
static class B { // B only used in A }

}



Static Nest Class: Examples

• Which one is correct or wrong?
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class A {
void method() {

B b = new B();
}
static class B { // B only used in A }

}

class A {
void method() {

B b = new A.B();
}
static class B { // B only used in A }

}

class A {
static void method() {

B b = new B();
}
static class B { // B only used in A }

}

class A {
static void method() {

B b = new A.B();
}
static class B { // B only used in A }

}



Questions?

• Nested classes

• Inner class

• Static nested class
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Assignments

• Practice Assignment

• CodeLab
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