
CISC 3120

C07: Class Projects, and
Testing and JUnit

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/21/2018 1CUNY | Brooklyn College

Outline

• Recap and issues

• Grades and feedback

• Practice assignments and CodeLabs

• Review guide and Test #1

• Project 1 and Semester Project Road Map

• Verification and Testing

• Unit Tests and JUnit

• Assignments

• Project 1

• Practice assignment (JUnit)

2/21/2018 CUNY | Brooklyn College 2

Recap and Issues

• Any questions?

• Grades and feedback

• Practice assignments and CodeLabs

• Review guide and Test #1

2/21/2018 CUNY | Brooklyn College 3

Design & Implement
Applications

• 5 team projects (phases) to build a Treasure Hunt
game application

• Each built from start-up code or built from previous
project (phase)

• Text-based to GUI

• Standalone to networked/distributed

2/20/2018 CUNY | Brooklyn College 4

• OOP design
• Composition
• Flow Control

• OOP design
• Inheritance
• Unit test

• GUI
• Event-driven

programming

• File I/O
• Network

I/O

• A taste
of Web

Project 1

• Start to build the Treasure Hunt game
application

• A simple desktop application with text-based
user interface (a.k.a., the command line user
interface)

• Game rules

• A “treasure” is buried in a field, unearthing the
treasure earns the player a score

• Clues are given when the player solves a puzzler

2/20/2018 CUNY | Brooklyn College 5

Project 1: Objectives

• Design, implement, and test a simple Java
application

• Apply the “composition” pattern

• Observe the “single responsibility principle”

• Use simple data structures and algorithms

• Be proficient in flow controls

2/20/2018 CUNY | Brooklyn College 6

Design Applications: Classes &
Objects

• Single responsibility principle

• A class should have only a single responsibility
and responsible for its own behavior

• Objects interacts with only their methods

2/20/2018 CUNY | Brooklyn College 7

Treasure Hunt

• The game

• Game interface (Game frame)

• Player scores

• One class or two classes? Your choice?

1. One class controls game interface and keeps
track of player scores

2. Two classes, one controls game interface, the
other keeps track of player scores

2/20/2018 CUNY | Brooklyn College 8

Project 1 Start-up Code

• To develop and enhance the “Treasure Hunt”
from the start-up code

• https://github.com/CISC3120SP18/ProjectStart
upCode/tree/master/TreasureHuntOnConsole

2/20/2018 CUNY | Brooklyn College 9

https://github.com/CISC3120SP18/ProjectStartupCode/tree/master/TreasureHuntOnConsole

Project 1 In-Class Team
Discussion
• Select project coordinator: coordinator’s responsibility

• Accept the assignment

• Clone the team project repository

• Copy and add the start-up project to your own project repository (if not
already done by Github)

• Commit and push the project

• Members’ responsibility

• Clone the repository and make a contribution as a team member

• Discuss initial tasks and steps:

• Use Github issue tracking to create tasks (issues) and assign them team
members

• Conflict resolution in Git

2/20/2018 CUNY | Brooklyn College 10

Conflict Resolution in Git

• Have you experienced it?

• Have you experienced that Git rejects your
push?

2/21/2018 CUNY | Brooklyn College 11

Distributed Workflow

9/28/2017 CUNY | Brooklyn College 12

commits commits

Remote Repository

Merge Conflict

9/28/2017 CUNY | Brooklyn College 13

commits commits

Remote Repository

Merge conflict
may happen!

Merge Conflict

• When it happens

• Your and your team member made changes to the same file.

• The remote repository carries your team member’s change

• Your local repository (committed made) contains you change

• The merge attempt results the file having both changes and
marked with markers

• Edit the file

• Add and commit the edit file

• Push it again

2/21/2018 CUNY | Brooklyn College 14

Work in team using Git and
Github

• Do not create named branches

• A GitHub guide (well written) is linked in the
class website for merge

• Do use commit commenting and GitHub issue
tracking

2/21/2018 CUNY | Brooklyn College 15

Questions?

• Project 1

2/20/2018 CUNY | Brooklyn College 16

"A well built physique is a status symbol. It reflects you
worked hard for it, no money can buy it. You cannot
borrow it, you cannot inherit it, you cannot steal it. You
cannot hold onto it without constant work. It shows
discipline, it shows self respect, it shows patience, work
ethic and passion. That is why I do what I do.“

--Arnold Schwarzenegger

Software Failures

• Ariane 5 rocket explosion (June 4, 1996)

• “Overflow from conversion from a 64-bit floating point number to a
16-bit signed integer value …”

• Therac-25 lethal radiation overdose (June 1985 ~ Jan 1987)

• “Some basic software engineering principles were apparently violated
…”

• Mars Climate Orbiter disintegration (December 11, 1998)

• “... In the case of the ground software, … was in English units of
pounds (force)-seconds (lbf-s) rather than the metric units specified
…”

• FBI Virtual Case File project abandonment (2000 ~ 2005)

• “ …a systematic failure of software engineering practices …”

2/21/2018 CUNY | Brooklyn College 17

Recent Stories in the Airlines
Industry
• “The big computer systems that get airplanes,

passengers and baggage to their destinations every
day are having a bad summer.” (NY Times, August 8,
2016)

• 1,000 0f 6,000 Delta flights canceled, August 8-9, 2016

• 2,300 canceled flights over 4 days at Southwest Airlines,
~July 22, 2016

• Hundreds of flights grounded at United Airlines, July
2015

• An iPad software glitch caused two days of problems for
American Airlines, the airline said Wednesday …

2/21/2018 CUNY | Brooklyn College 18

Software Quality Assurance

• Verification

• Did you build the thing right? (Did you meet the
specification?)

• Validation

• Did you build the right thing? (Is this what the
customer wants? That is, is the specification
correct?)

• Two approaches

• Testing

• Formal methods

2/21/2018 CUNY | Brooklyn College 19

Formal Methods for Software
Verification
• Start with a formal specification and prove code

behavior follows that of specification

• Mathematical proofs

• Humans do the proofs

• Computers do the proofs

• Automatic theorem proving

• Model checking

• In practice, mostly done for hardware; done in very limited
cases for software

• Computational intensive: hard to test, not too large spec., error
repair cost prohibitive, critical components or systems

2/21/2018 CUNY | Brooklyn College 20

Model Checking

• Determines whether a hardware or software design satisfies a formal specification

• Design expressed in an abstract model

• Formal specification expressed as a temporal logic formula

• An algorithmic means

• Identifies a counter-example execution showing the source of the problem if the
property does not hold

• Examples:

• Verification of VLSI circuits

• Communication protocols

• Software device drivers,

• Real-time embedded systems

• Security algorithms

2/21/2018 CUNY | Brooklyn College 21

Edmund M. Clarke, E. Allen Emerson, and
Joseph Sifakis

Testing for Software
Verification

• Everyone knows that debugging is twice
as hard as writing a program in the
first place. So if you're as clever as
you can be when you write it, how will
you ever debug it? -- Brian Kernighan

• Programming testing can be used to
show the presence of bugs, but never
to show their absence! – Edsger W.
Dijkstra

2/21/2018 CUNY | Brooklyn College 22

Testing

• Exhaustive testing is infeasible

• e.g., 1 nanosecond for test a program that has
one 64-bit input, how long does it take to test all
possible input values?

• Reduce the space for testing

• Perform different tests at different phases of
software development

2/21/2018 CUNY | Brooklyn College 23

Different Types of Tests

• System testing (acceptance testing):
if the integrated program meets its
specification

• Integration testing: interfaces
between units have consistent
assumption and communicate correctly

• Module testing: tests across individual
units (e.g., across classes)

• Unit testing: single method does what
was expected (e.g., within a single
class)

2/21/2018 CUNY | Brooklyn College 24

Unit Testing

Module Testing

Integration Testing

System Testing
(Acceptance Testing)

Perspectives: Black-box vs.
White-box Tests

• Black-box tests

• Test design is solely based on the program’s
external specifications

• White-box (glass-box) tests

• Test design reflects knowledge about the
program’s implementation, e.g., developers’ doing
the tests

• For it or against it?

2/21/2018 CUNY | Brooklyn College 25

Test Coverage

• The fraction of the possible program
execution paths that have been tested

• 100% of test coverage is no guarantee of design
reliability

• Quality of tests also matters

2/21/2018 CUNY | Brooklyn College 26

Common Test Coverage Levels

• S0 (method coverage)

• Is every method executed at least once by the test suite?

• S1 (call coverage or entry/exit coverage)

• Has each method been called from every place it can be called?

• C0 (statement coverage)

• Is every statement of the source code executed at least once by the
test suite?

• C1 (branch coverage)

• Has each branch been taken in each direction at least once?

• C2 (path coverage)

• Has every possible route through the code been executed?

2/21/2018 CUNY | Brooklyn College 27

Sample Code to Test

1. public class MyClass {

2. public void foo(boolean x, boolean y, boolean z) {

3. if (x)

4. if (y && z) bar(0);

5. else

6. bar(1);

7. }

8. public boolean bar(x) {

9. return x;

10. }

11. }

2/21/2018 CUNY | Brooklyn College 28

Test Coverage S0

1. public class MyClass {

2. public void foo(boolean x,
boolean y, boolean z) {

3. if (x)

4. if (y && z) bar(0);

5. else

6. bar(1);

7. }

8. public boolean bar(x) {

9. return x;

10. }

11. }

Satisfying S0 requiring calling
foo and bar at least once each
in the tests

2/21/2018 CUNY | Brooklyn College 29

Test Coverage S1

1. public class MyClass {

2. public void foo(boolean x,
boolean y, boolean z) {

3. if (x)

4. if (y && z) bar(0);

5. else

6. bar(1);

7. }

8. public boolean bar(x) {

9. return x;

10. }

11. }

Satisfying S1 requiring calling
bar from both line 4 and line 6
in the test suites

2/21/2018 CUNY | Brooklyn College 30

Test Coverage C0

1. public class MyClass {

2. public void foo(boolean x,
boolean y, boolean z) {

3. if (x)

4. if (y && z) bar(0);

5. else

6. bar(1);

7. }

8. public boolean bar(x) {

9. return x;

10. }

11. }

Counting both branches of a
conditional as a single
statement, satisfying C0
requiring calling foo at least
once with x true, and at least
once with y false

2/21/2018 CUNY | Brooklyn College 31

Test Coverage C1

1. public class MyClass {

2. public void foo(boolean x,
boolean y, boolean z) {

3. if (x)

4. if (y && z) bar(0);

5. else

6. bar(1);

7. }

8. public boolean bar(x) {

9. return x;

10. }

11. }

Satisfying C1 requiring calling
foo at least once with x true,
and with x false, and with y &&
z true and false.

2/21/2018 CUNY | Brooklyn College 32

Test Coverage C2

1. public class MyClass {

2. public void foo(boolean x,
boolean y, boolean z) {

3. if (x)

4. if (y && z) bar(0);

5. else

6. bar(1);

7. }

8. public boolean bar(x) {

9. return x;

10. }

11. }

Satisfying C2 requiring calling
foo with all 8 combinations of
values of x, y, and z

2/21/2018 CUNY | Brooklyn College 33

Modified Condition/Decision
Coverage (MCDC)

• Combines a subset of the above levels

• Each point of entry and exit in the program have
been invoked at least once

• Every decision in the code has taken all possible
outcomes at least once

• Each condition in a decision has been shown to
independently affect that decision’s outcome

2/21/2018 CUNY | Brooklyn College 34

Achieving Test Coverage

• 100% of C0 coverage is not unreasonable.

• Achieving C1 coverage requires careful
construction of tests.

• C2 is the most difficult of all, and the
additional value of 100% of C2 is debatable.

2/21/2018 CUNY | Brooklyn College 35

Questions?

• Examples of catastrophic software failures

• Software quality assurance

• A few important concepts in software
testing

2/21/2018 CUNY | Brooklyn College 36

Unit and Functional Testing

• Recall …

• Unit testing: single method does what was expected (e.g.,
within a single class)

• Functional testing: a well-defined subset of the code does
what was expected (e.g., several methods and classes)

• Tests

• Calls to methods with different input parameters

• Asserts on the effects of method calls

• Aims for high coverage

• Almost always white-box, and performed by developers

2/21/2018 CUNY | Brooklyn College 37

Test Assertion

• An expression encapsulates some testable
logic about a target under test

2/21/2018 CUNY | Brooklyn College 38

JUnit

• A unit testing framework for Java

• Test assertion in JUnit

• It throws an exception if it evaluates to false

2/21/2018 CUNY | Brooklyn College 39

Unit Test Example with JUnit

• Some of you completed the Array and ArrayList
assignment

• Let’s use it as an example

• Test whether the “delete” method functions as
specified.

public class FruitArray

{ ...

public void delete(String fruitName) { … }

…

}

2/21/2018 CUNY | Brooklyn College 40

What is the Specification?

public class FruitArray

{ ...

public void delete(String fruitName) { … }

…

}

2/21/2018 CUNY | Brooklyn College 41

What is the Specification?

• Remove an element, “shrink” the “list”, as if
the element had never been in the “list”.

public class FruitArray

{ ...

public void delete(String fruitName) { … }

…

}

2/21/2018 CUNY | Brooklyn College 42

What is the Test Assertion?

• It is expected that upon an item is deleted,
the object should be identical to another
object of the class that does not have the
item from beginning with, but has all the
other items.

2/21/2018 CUNY | Brooklyn College 43

Design for Testing

• Add methods to aid testing

• Some methods may be added
just for testing purpose.

2/21/2018 CUNY | Brooklyn College 44

“Testable
code tends to
be good code,

and vice
versa.”

“But, you don’t
want to break the
good design just
for unit tests!”

Example Implementation in
JUnit 4
• Use JUnit 4, assume Maven project in Eclipse using the Quickstart archetype 1.1

• A few steps

• Update pom.xml

<!-- https://mvnrepository.com/artifact/junit/junit -->

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.12</version>

<scope>test</scope>

</dependency>

• Remove AppTest.Java

• Create your own test class (See https://github.com/junit-team/junit4/wiki/getting-started)

• Complete the example in “ArrayArrayList” in the “sampleprograms” repository

2/21/2018 CUNY | Brooklyn College 45

https://github.com/junit-team/junit4/wiki/getting-started

FruitArrayTest.java

import static org.junit.Assert.assertEquals;

import static org.junit.Assert.assertArrayEquals;

import org.junit.Test;

public class FruitArrayTest

{

@Test // Important: annotate a test

public void testDelete()

{

testDeleteByDeleting1st();

testDeleteByDeleting3rd();

testDeleteByDeletingLast();

testDeleteIgnoreCaseByDeleting1st();

testDeleteIgnoreCaseByDeletingLast();

}

private void testDeleteByDeleting1st() {

String[] fruits = {new String("Apple"),

new String("Banana"),

new String("Kiwi"),

new String("Mango"),

new String("Orange")};

FruitArray fruitArray = new FruitArray(fruits);

fruitArray.delete(new String("Apple"));

assertEquals(fruitArray.getSize(), fruits.length - 1);

assertEquals(fruitArray.getCapacity(), fruits.length);

assertArrayEquals(fruits, fruitArray.getFruitsAsArray());

}

…

2/21/2018 CUNY | Brooklyn College 46

Note: the purpose of the test is to show how you
write tests in a JUnit. This test is actually
poorly designed. See the sample code in the repo
for better ones.

Did We Pass the Tests?

2/21/2018 CUNY | Brooklyn College 47

Questions

• JUnit

• Examples in JUnit 4

• Update pom.xml

• Use the sample code as the template or the one
in the JUnit 4 wiki page

2/21/2018 CUNY | Brooklyn College 48

Assignments

• Practice Assignment

• Project 1

2/21/2018 CUNY | Brooklyn College 49

