
CISC 3120

C06: Java API & Libraries
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/20/2018 1CUNY | Brooklyn College

Outline

• Recap and issues

• Grades and feedback

• Java classes and objects

• Java methods and flow controls

• Java API and libraries

• Assignments

2/20/2018 CUNY | Brooklyn College 2

Q: How am I doing?

• Check your grades often in CUNY
Blackboard

2/20/2018 CUNY | Brooklyn College 3

Q: How well did I do in an
assignment?

• Feedback channel

• Github issues

• Github commit comments

2/20/2018 CUNY | Brooklyn College 4

Q: How can I improve?

• “I must get an ‘A’!”

• Solution

• Complete all assignments

• Squeeze more time

• ……

2/20/2018 CUNY | Brooklyn College 5

Recap

• Discuss Java from perspective of a C++
developer

• Classes and objects

• How do we write Java classes?

• How do we create Java objects?

• How do Java objects work together?

• Flow controls

• Selections, iterations, break, continue, and return

2/20/2018 CUNY | Brooklyn College 6

Java API and Libraries

“If I have seen further than others, it is by
standing upon the shoulders of giants. “

-- Isaac Newton

2/20/2018 CUNY | Brooklyn College 7

Java APIs and Libraries

• https://docs.oracle.com/javase/8/docs/api/

2/20/2018 CUNY | Brooklyn College 8

https://docs.oracle.com/javase/8/docs/api/

Use Java API Documentation

• API documentation is divided into packages

• The documentation of a class has a few sections

• Examples

• Explore: Math and Random

• When search using a Web search engine, include
“Java”, “api”, and version

• Examples

• java api 8 arrays

2/20/2018 CUNY | Brooklyn College 9

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://www.google.com/search?q=Java+Arrays+api+8

Documentation Organization

• Package & class

• Description of the class

• Fields

• Constructors

• Methods

2/20/2018 CUNY | Brooklyn College 10

Questions?

• Use Java API documentation

• Packages

• Classes

• Documentation structure

• Navigate and search Java API documenation

2/20/2018 CUNY | Brooklyn College 11

Java API: Arrays and
ArrayLists

• Arrays and lists are common data structures

• Basis to build more sophisticated data
structures

• Examples: queues, stacks, trees, graphs

• Examples in the Sample Programs repository

2/20/2018 CUNY | Brooklyn College 12

Array

• A collection of elements of the same data type

• Each element has an index

• Each element is accessed via the index at a constant
time

• An array generally has a fixed size

• Implication

• Need to know beforehand how many elements there are.

• What if we don’t know it?

• Over-provisioning

2/20/2018 CUNY | Brooklyn College 13

Examples in Java: 1-Dimensional

• Declaration and initialization

• int[] numbers = new int[10];

• Dog[] dogs = new Dog[5];

• byte[] bytes;

• bytes = new byte[5];

• Accessing element

• numbers[1] * 2.0

• dogs[dogs.length-1].bark()

• byte[0] = 64;

2/20/2018 CUNY | Brooklyn College 14

Examples in Java: N-
Dimensional

• 2-dimensional

• Declare and initialize a 2-dimensional array and
assign random numbers to each element

double[][] numbers = new double[2][3];

for (int i=0; i<2; i++) {

for (int j=0; j<3; j++) {

numbers[i][j] = Math.random();

}

}

2/20/2018 CUNY | Brooklyn College 15

Examples in Java: N-
Dimensional
• 3-dimensional

• Declare and initialize a 3-dimensional array and assign
random numbers to each element

int[][][] numbers = new int[2][3][2]; Random rng = new Random();

for (int i=0; i<2; i++) {

for (int j=0; j<3; j++) {

for (int k=0; k<2; k++) {

numbers[i][j][k] = rng.nextInt(100);

}

}

}

2/20/2018 CUNY | Brooklyn College 16

Examples in Java: N-
Dimensional

• N-dimensional: more examples

int[][][][] numbers = new int[2][3][9][2];

int[][][][][] moreNumbers = new int[3][4][5][2][8];

2/20/2018 CUNY | Brooklyn College 17

Array of Arrays

• Java and C++

• Java does not really have a N-dimensional array
as C++ does

• In C++, all the elements of the array occupy a
continuous block of memory

• What Java has is in effect an array of arrays

2/20/2018 CUNY | Brooklyn College 18

Example: Array of Arrays

• Observe the following

int[][] numbers = new int[3][]; Random rng = new
Random();

for (int i=0; i<3; i++) {

numbers[i] = new int[rng.nextInt(100)+1];

}

for (int i=0; i<3; i++) {

System.out.println(numbers.length);

}

2/20/2018 CUNY | Brooklyn College 19

Interpreting Array of Arrays

• A Java array is an object, each can be an
array object itself

2/20/2018 CUNY | Brooklyn College 20

Stack

numbers

Heap

Iterating Array of Arrays

• A better method

int[][][] numbers = new int[2][3][2]; Random rng = new
Random();

for (int i=0; i<numbers.length; i++) {

for (int j=0; j<numbers[i].length; j++) {

for (int k=0; k<numbers[i][j].length; k++) {

numbers[i][j][k] = rng.nextInt(100);

}

}

}

2/20/2018 CUNY | Brooklyn College 21

• The Java Arrays class

• Copying and cloning

• Insertion and deletion

• Searching and sorting

2/20/2018 CUNY | Brooklyn College 22

Java Array Operations

Copying and Cloning Arrays of
Primitive Types

• Use an iteration

• Any dimensions

• Use Arrays.copyOf()

• One dimension

• Use System.arraycopy()

• One dimension

• Use clone()

2/20/2018 CUNY | Brooklyn College 23

Example: Using Iteration

int[][] copyOfNumbers = new int[numbers.length][];

for (int i=0; i<numbers.length; i++) {

copyOfNumbers[i] = new int[numbers[i].length];

for (int j=0; j<numbers[i].length; j++) {

copyOfNumbers[i][j] = numbers[i][j];

}

}

2/20/2018 CUNY | Brooklyn College 24

Example: Using Arrays.copyOf()
and Systems.arraycopy()

• Using Arrays.copyOf()

int[][] copyOfNumbers = Arrays.copyOf(numbers, numbers.length);

• Using Systems.arraycopy()

int[][] copyOfNumbers = new int[numbers.length][];

System.arraycopy(numbers, 0, copyOfNumbers, 0, numbers.length);

2/20/2018 CUNY | Brooklyn College 25

Example: Using Array Object’s
clone() Method

• Must cast the return value to the proper data type

int[][] copyOfNumbers = (int[][]) numbers.clone();

2/20/2018 CUNY | Brooklyn College 26

Arrays.copyOf() and
Systems.arraycopy()

• Arrays.copyOf() return a new array

• Systems.arraycopy requires the destination
array object is already allocated

• Arrays.copyOf() uses Sytems.arraycopy()
under the hood

• Basically, allocate a new array, and invoke
Systems.arrayCopy()

2/20/2018 CUNY | Brooklyn College 27

Array clone() and
Arrays.copyOf()

• Consider Arrays.copyOf() as an improved
version of Array clone()

• Arrays.copyOf() can resize the array with
truncation or padding

• When using clone(), one has to cast the return
value of clone()

2/20/2018 CUNY | Brooklyn College 28

What should I use?

• Use Arrays.copyOf()

• If the destination array is already allocated,
use Systems.arraycopy()

• When copying objects, you may have to write
own code

• Use iterations or/and the combinations of the
above

• Revisit when discussing ArrayList

2/20/2018 CUNY | Brooklyn College 29

Copying and Cloning of Array of
Objects

• Deserve a further investigation

• Are you copying objects or references of
objects?

• Revisit when discussing ArrayList

2/20/2018 CUNY | Brooklyn College 30

How to find answers like these?

• API documentation

• Sometimes still insufficient

• Question & answer sites

• Example: Stack Overflow

• Always take with a grain of salt

• Examine the JDK source code (OpenJDK)

• http://hg.openjdk.java.net/jdk8/jdk8/

• Example:

• http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classe
s/java/util/Arrays.java#l3202

2/20/2018 CUNY | Brooklyn College 31

http://hg.openjdk.java.net/jdk8/jdk8/
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/Arrays.java#l3202

Inserting and Deleting Elements
in Array

• Array’s length is immutable

• Without making a copy or clone, one cannot truly
insert or delete elements in array

• Inserting element

• Use over-provisioning

• Make copy

• Deleting element

• Marking unused element

• Make copy

2/20/2018 CUNY | Brooklyn College 32

Searching

• Sequential search

• Write your own iteration

• Does not require the array is sorted

• Time: O(n)

• Binary search

• Use Arrays.binarySearch(…)

• Requires that the array is sorted

• Time: O(log(n))

2/20/2018 CUNY | Brooklyn College 33

Sorting

• Use Arrays.sort()

2/20/2018 CUNY | Brooklyn College 34

Questions

• Arrays

• Characteristics

• Common operations

• The Arrays class

2/20/2018 CUNY | Brooklyn College 35

Limitation of Arrays

• Length is immutable

• What if we don’t know the length
beforehand?

2/20/2018 CUNY | Brooklyn College 36

ArrayList

• Java ArrayList is in effect a vector

• Have similar characteristics as array when
accessing an element

• Dynamically grow size when needed

• A little bit slower than arrays

• More space than arrays

2/20/2018 CUNY | Brooklyn College 37

Array and ArrayList

• Array

• Example

• String[] fruits = new String[5];

• fruits[0] = new String(“Apple”);

• System.out.println(fruits[0]);

• ArrayList

• Example

• ArrayList<String> fruitList = new ArrayList<String>();

• fruitList.add(new String(“Apple”));

• System.out.println(fruitList.get(0));

2/20/2018 CUNY | Brooklyn College 38

ArrayList

• An resizable-array implementation of a list

• where a list is an ordered sequence of elements

• In Java

• Array-like characteristics

• List-like access interface (methods you can invoke)

• Declaring and initializing

• Copying and cloning

• Insertion and deletion

• Searching and sorting

2/20/2018 CUNY | Brooklyn College 39

Creating ArrayList

• Constructor and Description

• ArrayList()

• Constructs an empty list with an initial capacity of ten.

• ArrayList(int initialCapacity)

• Constructs an empty list with the specified initial
capacity.

• ArrayList(Collection<? extends E> c)

• Constructs a list containing the elements of the specified
collection, in the order they are returned by the
collection's iterator.

2/20/2018 CUNY | Brooklyn College 40

Example: Creating ArrayList

• First try:

• ArrayList dogs = new ArrayList();

• Correct, but the complier complains: what data
type is of each element?

• Use generics (we will discuss in the future, but
you will get used to it before the discussion)

• ArrayList<Dog> dogs = new ArrayList<Dog>();

2/20/2018 CUNY | Brooklyn College 41

Example: Creating ArrayList

• More examples:

• ArrayList<Dog> dogs = new ArrayList<Dog>(100);

• ArrayList<Integer> numbers = new ArrayList<Integer>();

• ArrayList<Double) doubles = new ArrayList<Double>(50);

• How about the constructor:

• ArrayList(Collection<? extends E> c)

• Constructs a list containing the elements of the
specified collection, in the order they are returned by
the collection's iterator.

2/20/2018 CUNY | Brooklyn College 42

Example: Creating ArrayList, a
Shallow Copy via Constructor
• Using the constructor

• ArrayList(Collection<? extends E> c)

• Constructs a list containing the elements of the specified
collection, in the order they are returned by the collection's
iterator.

• ArrayList is in fact a Collection

• Example
• ArrayList<Dog> dogs = new ArrayList<Dog>();

• dogs.add(new Dog(1, “Buddy”));

• ArrayList<Dog> shallowCopyOfDogs = new ArrayList<Dog>(dogs);

• What is a “shallow copy”, is there a deep copy?

2/20/2018 CUNY | Brooklyn College 43

Shallow and Deep Copy

2/20/2018 CUNY | Brooklyn College 44

Stack

dogs

Heap

shallowCopyOfDogs

deepCopyOfDogs

Copy and Clone ArrayList

• Use the Constructor (just discussed) to obtain a
shallow copy

• Use ArrayList’s clone() method

• Returns a shallow copy of this ArrayList instance.

• However, not as nice as the constructor as you have
to suppress the “type check” warning,

@SuppressWarnings("unchecked")

ArrayList<Dog> anotherShallowCopyOfDogs = (ArrayList<Dog>) dogs.clone();

2/20/2018 CUNY | Brooklyn College 45

How about Deep Copy?

• Implement yourself

• Be cautious, and always ask yourself, is the
copy of the object a shallow copy or a deep
copy?

2/20/2018 CUNY | Brooklyn College 46

A Footnote: Creating Object

• Why can you write like this in Java?

• dogs.add(new Dog(1, “Buddy”));

• In comparison, you should not write this in
C++

• dogs.add(new Dog(1, “Buddy”))

• even if the add method’s signature permits
it.

2/20/2018 CUNY | Brooklyn College 47

Search ArrayList

• Sequential search on an object

• Use ArrayList’s indexOf() method

• Does not require that the ArrayList is sorted

• What if one wants to search on a “key”

• e.g., by a dog’s name?

• Binary search

• Use the Collections class’s binarySearch methd since
ArrayList is a collection

• Require the ArrayList is sorted in the ascending order

• Discussion in the future due to new concepts yet to be
discussed (an example is given)

2/20/2018 CUNY | Brooklyn College 48

Sort ArrayList

• Multiple approaches (although essentially
equivalent)

• Use ArrayList’s sort() method

• Use the Collections class’s sort() method

• Discussion in the future due to new concepts yet
to be discussed (an example is given)

2/20/2018 CUNY | Brooklyn College 49

Array or ArrayList, Which One
to Use?

• Do you know how big your “list” should be?

2/20/2018 CUNY | Brooklyn College 50

Questions

• Array and ArrayList

• Characteristics

• Common operations

• The Arrays class (Array is an array)

• The Collections class (ArrayList is a
collection)

2/20/2018 CUNY | Brooklyn College 51

Third Party Java Libraries

• Examples:

• https://github.com/google/guava

• https://github.com/apache/commons-lang

• https://github.com/qos-ch/slf4j

• https://github.com/spring-projects/spring-
framework

2/20/2018 CUNY | Brooklyn College 52

https://github.com/google/guava
https://github.com/apache/commons-lang
https://github.com/qos-ch/slf4j
https://github.com/spring-projects/spring-framework

Command Line Arguments

• Want to build an application that take many
command line arguments

• Apache Commons CLI

• https://github.com/apache/commons-cli

2/20/2018 CUNY | Brooklyn College 53

https://github.com/apache/commons-cli

Example Application

• The “CmdLineArgsDemo” in the Sample
Programs

2/20/2018 CUNY | Brooklyn College 54

Logging

• Want to build an application that can
produce “logs” when it is even being
released.

• The Simple Logging Facade for Java (SLF4J)

• https://github.com/qos-ch/slf4j

2/20/2018 CUNY | Brooklyn College 55

https://github.com/qos-ch/slf4j

Example Application

• The “LoggingDemo” in the Sample Programs
repository

2/20/2018 CUNY | Brooklyn College 56

Assignments

• Required

• Practice

• CodeLab

• Optional

• Revise the BeerSong with the command line
arguments to use the Apache Commons CLI library

• https://github.com/CISC3120SP18/SamplePrograms/tree
/master/OOP/01_31/BeerSongClArg

2/20/2018 CUNY | Brooklyn College 57

https://github.com/CISC3120SP18/SamplePrograms/tree/master/OOP/01_31/BeerSongClArg

Questions?

• Java API and Libraries

• Array and ArrayList

• Introduction to Java API and Libraries

• Arrays, ArrayList, Collections, Random, Math

• Third Party Java Libraries

• Command line arguments and logging

• Assignments

• Practice assignment

• CodeLab

2/20/2018 CUNY | Brooklyn College 58

