CISC 3120
C0O5: Flow Controls

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College



Outline

* Recap and issues
 Selections & iterations
* Flow controls in Java
* Booleans and Conditions

 More on selection & iterations

* Break, continue, and return

* Assignments



Recap & Observations

* Programming is also a skill
* What is your learning style?
» Concept of a software project

» What should be in a repository?



Programming is a skill oo

* Programming is learned by programming, not
from reading books.

 Translate specification to algorithm, translate
algorithm to code

2/14/2018 CUNY | Brooklyn College



Learning Style

* Your most comfortable way of learning may
not be your best

« Work individually?
« Work in a group?
* Ask questions?

* Passively or proactively?



Software Project

* A software project consists of many pieces

» Example

A Java project consists of many Java classes.

 An IDE helps you manage software projects



SCM Repository

* What should be in the code repository?

* Derived artifacts are usually NOT in the
repository.
« Example:
« For Maven project,
- .settings, .classpath, .project
« For any Java project

« .classes, target, bin



Questions?

* Questions?

* Suggestions?

If you understand what you're doing, you're not
learning anything.
-- Anonymous




Recap: Selections & Iterations

-

T

e Selections

* if-then statement

 if-then-else statement

* I'terations '

* while statement

 for statement +—-J f—-—-J

2/14/2018 CUNY | Brooklyn College 9




Boolean Expression

« Often used to control the flow of program
execution

« Which branch? ﬁ
* Should it be repeated? f

l
| -
* : W | l “

2/14/2018 CUNY | Brooklyn College 10




Boolean Expression

* An expression evaluates to either true or
false

* Primitive data type: boolean
* true and false are Java keywords
* Relational operators and conditional operators

 Observe a few examples in FlowControlExamples
in the SamplePrograms repository

* BooleanConditionsExamples.java



Relational Operators

¢ < <= > >z == Iz
* Where you can use them depending on data
Types

* Is it meaningful to say “less than" or "greater than")
for the data type?

* In Java
* <,<=,>, >z are used with numerical values and variables

« == and I= can be used with both primitive data types and
reference types (objects)



Testing Object Equivalence

* Relational operators "==" and "I=" can be used to
compare objects

Integer nl = new Integer(3120);
Integer n2 = new Integer(3120);
System.out.printin(nl == n2);
System.out.printin(nl I= n2);
System.out.printin(nl.equals(n2));

« Observe it in FlowControlExamples in the
SamplePrograms repository



Two Dogs are Equal?

« How about objects of your classes?

» Test two dogs being equal?

class Dog {
boolean equals(Dog other) {

 See the TwoEqualDogs class

2/14/2018 CUNY | Brooklyn College 14



Advanced: Two Dogs are Equal?

* Proper way to do it (to be discussed in the future)

« Test two dogs being equal?
class Dog {
@Override
public boolean equals(Object other) {

@OQOverride
public int hashCode() {

2/14/2018 CUNY | Brooklyn College 15



How about String Objects?

 Strings are objects. How about these? Any surprises?
String s1 = new String("CISC 3120");
String s2 = new String("CISC 3120");
System.out.printin(sl == s2);
System.out.printin(sl.equals(s2));

String s1 = "CISC 3120";

String s2 = "CISC 3120";
System.out.printin(sl == s2);
System.out.printin(sl.equals(s2)):;



More Examples on Strings

« Compare these two:
String s1 = "CISC 3120%;
String s2 = "CISC 3120";
System.out.printin(sl == s2);
System.out.printin(sl.equals(s2));

// string literals allocated in run-time constant pool
String sl = "CISC 3120";

String s2 = sl;

System.out.printin(sl == s2);
System.out.printin(sl.equals(s2)):



Conditional Operators

* Three operators that produce a Boolean value
« AND (&4&)
* OR (I
« NOT (1)
* Do NOT confuse them with
* Bitwise AND (&)
* Bitwise OR (|)
« Bitwise NOT (~)
* Bitwise XOR (")



Short-Circuiting

 JVM ceases to evaluate further once a truth
or a falsehood value is unambiguously
determined.

» Example in FlowControlExamples in the
SampleProgram repository



Questions

* Boolean data type and Boolean values
* Boolean expressions
* Conditional operations

* Short-circuiting



Selections (Branching)

* If-then

* If-then-else
* Switch

« Examples

» SelectionExamples.java



Switch Statement

* Form
switch(integral-selector) {

case integral-valuel : statement; break;
case integral-value?2 : statement; break;
case integral-value3 : statement; break;
case integral-value4 : statement; break;
case integral-valueb : statement; break:
// ..

default: statement;



Questions?

e Selections in flow control



Iterations

* while statement

* for statement

* enhanced for statement
* do-while statement

« Examples

» TterationExamples.java



while, for, and do-while

* An algorithm can be implemented using
either with care

* However, one may be more conveniently to
use than the other



while, for, and do-while

« Which flow chart corresponds to while, for,
and do-while?

T |

2/14/2018 CUNY | Brooklyn College




Questions?

e Tterations in flow control



Break, Continue, and Return

e Break
* Continue
e Return

« Examples
» TterationExamples.java

» SelectionExamples.java



Break

* A break statement

* transfer controls to the innermost enclosing
break target

* then immediately completes it normally.

» Typical break target

» switch, while, do, or for statement of the l—__
immediately enclosing method

2/14/2018 CUNY | Brooklyn College 29



Continue

A continue statement

* transfers control o the innermost enclosing
continue target

 immediately ends the current iteration and
begins a new one.

« Typical continue target

* while, do, or for statement of the immediately
enclosing method, constructor

2/14/2018 CUNY | Brooklyn College 30



Return

* A return statement returns control to the
invoker of a method.

Invoker (caller) Invokee (callee)

e retunn




Question

* More discussions on

« Selection & iterations

 Discussion on the break, continue, and
return statements.



Console Input/Output

 Standard output

« System.out

* print, printin

« Standard input

« System.in
 Standard error

* Report errors

« System.err

* print, println



Console Output

 Standard output and standard error

» Often use String operations, such as, String
concatenation (the "+" operator)

« Examples

int n = (int) Math.random() * 10;

double sqrt = Math.sqrt(n);

String m = "Output: “;

System.out.printin(n); // value of variable n
System.out.printin(*n =" + n); // with a label "n ="
System.out.printin(m + *n =" + n); // with a String variable
System.out.printIn(" The square root of " + n+"is " + sqrt);



Console Input

« System.in is low-level (read one character at
a time). Wrap it with classes for input.

» Use Scanner
Scanner scanner = new Scanner(System.in);
double d = scanner.nextDouble();

» Examples:

» ConsoleIOExamples.java



Questions

» Console input/output
» Simple use cases of the Scanner class



Assignments

* Practice assignment
* Codelab assignment
» Upcoming: project 1



