
CISC 3120

C03: Objects, References,
and Primitives

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

02/05/2018 1CUNY | Brooklyn College

Outline

• Recap and issues

• Review some constructs for flow control

• selection & iteration

• Discuss some concepts in Objected-
Oriented Programming

• Discuss primitives and references

• Assignments

02/05/2018 CUNY | Brooklyn College 2

What did we learn from
BeerSong.java?
• Anatomy of a Java class

• What goes in a Java source code file, what goes in a Java class, and what goes
in a method?

• Where is the entry point of a Java program?

• A few data types

• Identifiers

• Simple and compound statements

• A few flow controls

• Comment

• Java build-in classes (Java libraries)

• Coding style

02/05/2018 CUNY | Brooklyn College 3

Using Command Line Arguments

• public static void main(String[] args)

• An array of String objects passed to the main
method

• How do we use it?

• Example: use it to change BeerSong’s behavior.

02/05/2018 CUNY | Brooklyn College 4

Selection Structures

• Similar to C++

• The if statement

• The if-then statement

• The if-then-else statement

• The switch statement (discuss later in C05)

02/05/2018 CUNY | Brooklyn College 5

If-Then: Examples

• Example

if (isMoving) {

currentSpeed --;

}

• Question: which one of the two are legal or
illegal in Java and in C++, respectively?

02/05/2018 CUNY | Brooklyn College 6

if (1)
currentSpeed --;

}

if (true)
currentSpeed --;

}

If-Then: Question

• In Java

• In C++

• What can you conclude?

02/05/2018 CUNY | Brooklyn College 7

if (1)
currentSpeed --;

}

if (true)
currentSpeed --;

}

if (1)
currentSpeed --;

}

if (true)
currentSpeed --;

}

If-Then-Else

• Example

if (testscore >= 90) {

grade = 'A';

} else if (testscore >= 80) {

grade = 'B';

} else if (testscore >= 70) {

grade = 'C';

} else if (testscore >= 60) {

grade = 'D';

} else {

grade = 'F';

}

02/05/2018 CUNY | Brooklyn College 8

Iterations

• The while statement

• The for statement

• The basic for statement

• The enhanced for statement (discuss later in
C05)

• The do statement (discuss later in C05)

02/05/2018 CUNY | Brooklyn College 9

The while Statement

• while (expression) statement

• Example

• BeerSong.java

02/05/2018 CUNY | Brooklyn College 10

The Basic for Statement

• The basic for statement

• for ([ForInit] ; [Expression] ; [ForUpdate])
Statement

02/05/2018 CUNY | Brooklyn College 11

The basic for Statement:
Examples

• Example 1
for (int i=99; i>=0; i--) {

System.out.println(i + “bottles of beers on the wall”);

}

• Example 2
// print out command line arguments

for (int i=0; i<args.length; i++) {

System.out.println(args[i])

}

02/05/2018 CUNY | Brooklyn College 12

Questions?

• Flow controls

• Selections

• Iterations

02/05/2018 CUNY | Brooklyn College 13

Classes and Objects

• Divide an application into multiple classes

• Instantiate objects from classes

• Thinking: client & server

• Client & server interact via method invocation.

• A client invokes the server’s method

• Some literature call this “message passing”.

02/05/2018 CUNY | Brooklyn College 14

The Guessing Game

• Simulate a game where 3 players guess a
number that is being held as a secrete.

• Generate a list random numbers.

• Have 3 players to make a guess.

• See who makes correct guess.

02/05/2018 CUNY | Brooklyn College 15

Design of the Guessing Game
Application

• Divide the application into 3 classes

• GuessingGameLauncher

• GuessingGame

• Player

• The “Composition” pattern

02/05/2018 CUNY | Brooklyn College 16

GuessingGameLauncher

GuessingGame

Player

Describing a Class

• UML: Class diagram

02/05/2018 CUNY | Brooklyn College 17

Player

number

guess()
getGuessedNumber()

GuessingGameLauncher

GuessingGame

Player

number

guess()
getGuessedNumber()

Creating Objects

• Create objects (or instances) from a class
(or instantiate a class)

• Using the “new” operator

• Examples

• GuessingGame game = new GuessingGame();

• Player player = new Player();

02/05/2018 CUNY | Brooklyn College 18

Object-to-Object
Communication

• Method invocation

• Client & server

• Client object calls the server object’s method

• The client pass a message to the server

• Example

• player.guess()

• player is the server

• The object that has the statement is the client

02/05/2018 CUNY | Brooklyn College 19

Questions?

• Class and objects

• The “composition” pattern

• Object-to-object communication

02/05/2018 CUNY | Brooklyn College 20

References

• Everything is an object in Java (except
primitives)

• Variables hold references to objects

02/05/2018 CUNY | Brooklyn College 21

Object and Reference

• Example

• GuessingGame game = new GuessingGame();

• GuessingGame: class

• game: variable

• Variable game holds the reference to the
object created by “new GuessingGame()”.

• “game” is not, “game” does not hold the object

02/05/2018 CUNY | Brooklyn College 22

Where are the Objects?

• Player p = new Player();

• Where is the player object?

02/05/2018 CUNY | Brooklyn College 23

Where are the Objects?

• JVM memory

• Stack

• Where local variables (a.k.a., stack variables) are allocated

• (Garbage-Collection) Heap

• Where objects are allocated (note: instance variables are part of an object)

public void startGame() {

Player p = new Player();

}

02/05/2018 CUNY | Brooklyn College 24

Stack Heap

p
A Player
object

Life Cycle of Objects

• How do I “destroy” the object and release
the memory?

Compare it with C++

02/05/2018 CUNY | Brooklyn College 25

Java Garbage Collector

• A program runs on the Java Virtual Machine (JVM)

• Implements automatic memory management

• Look for objects that are not being used by applications
any more, and remove the objects, and freeing the
memory.

• In Java, the garbage collector does the memory
management for you.

• In C++, you needs to perform memory management
all by yourself (using the new and delete operators)

02/05/2018 CUNY | Brooklyn College 26

Primitive Data Types

• Special data types built into the language

• Not objects created from a class

• Java has 8 primitive data types

02/05/2018 CUNY | Brooklyn College 27

Java Primitive Data Types

• 8 primitive data types

02/05/2018 CUNY | Brooklyn College 28

Type Description Default Size Example Literals

boolean True or false False 1 bit true, false

byte integer 0 8 bits (none)

char Unicode character \u0000 16 bits ‘a’, ‘u0041’, ‘\101’

short Integer 0 16 bits (none)

int Integer 0 32 bits -9, -8, 0, 1 2

long Integer 0 64 bits 3L, 1L, -1L, -3L

float Floating point 0.0 32 bits 3.14e10f, -1.23e-100f

double Floating point 0.0 64 bits 1.1e1d, -3.14e10d

Numerical Literals

• A few types: byte, short, int, long, float, double

• Java 7 or newer allow “_” in numerical literals

• long creditCardNumber = 1234_5678_9012_3456L;

• long socialSecurityNumber = 999_99_9999L;

• float pi = 3.14_15F;

• long hexBytes = 0xFF_EC_DE_5E;

• long hexWords = 0xCAFE_BABE;

• long maxLong = 0x7fff_ffff_ffff_ffffL;

• byte nybbles = 0b0010_0101;

• long bytes = 0b11010010_01101001_10010100_10010010;

• Prefixes: 0x and 0b indicate hexadecimal and binary values, respectively

• Suffixes: L and F indicate long and float values, respectively

02/05/2018 CUNY | Brooklyn College 29

Choose Primitive Data Type

• Require that you understand the needs of
your application

• Examples

• Do you need a variable to hold whole numbers? What
are the range of the whole numbers?

• If your numbers may have fractions, do they need to
be precise?

• May BigDecimal be more appropriate?

02/05/2018 CUNY | Brooklyn College 30

Characters

• Always use single quote for character

• Java character holds a Unicode character

• A character is a 16-bit Unicode

• A character literal can be a “Unicode escape”

• ‘\u00ed’ (í in Spanish)

• ‘\u00f1’ (ñ in Spanish)

02/05/2018 CUNY | Brooklyn College 31

Special Characters

• A few special escape sequences for char and String literals

• \b (backspace)

• \t (tab),

• \n (line feed)

• \f (form feed)

• \r (carriage return)

• \" (double quote)

• \' (single quote)

• \\ (backslash)

• Example

• char c = ‘\b’;

02/05/2018 CUNY | Brooklyn College 32

Java Variables

• 4 kinds of variables

• Instance variables (non-static fields)

• Class variables (static fields)

• Local variables

• Parameters

02/05/2018 CUNY | Brooklyn College 33

4 Kinds of Variables: Example

• Identify 4 kinds of variables

02/05/2018 CUNY | Brooklyn College 34

class Bus {
static int numOfWheels = 4;
double speed;

void accelerate(double acceleration, double duration) {
double speedIncrement = acceleration * duration;
speed += speedIncrement;

}
}

4 Kinds of Variables: Example

• Identify 4 kinds of variables

02/05/2018 CUNY | Brooklyn College 35

class Bus {
static int numOfWheels = 4;
double speed;

void accelerate(double acceleration, double duration) {
double speedIncrement = acceleration * duration;
speed += speedIncrement;

}
}

Class variable

Instance variable

Local variable

Parameters

Variable Names

• Variable names are case-sensitive.

• An unlimited-length sequence of Unicode letters and digits

• Must begin with a letter, the dollar sign "$", or the underscore
character "_".

• Naming convention

• If not constants (not “final”)

• Always start with a letter

• First word are all lower case letters

• Capitalize first letter of each subsequent words

• If constants (final)

• Capitalizing every letter and separating subsequent words with the underscore
character

02/05/2018 CUNY | Brooklyn College 36

Variable Initialization and
Default Values

• Java compiler initializes instance variables
with default values

• Java compiles does not initialize local
variables

• Accessing an uninitialized local variable will
result in a compile-time error.

02/05/2018 CUNY | Brooklyn College 37

Declare Variables of Primitive
Types
• Declaration without initialization

• Examples

• int count;

• boolean isDone;

• double gpa;

• Declaration with initialization

• Examples

• int count = 0, sum = 0;

• boolean hasVisited = false;

• double gpa = 0.0;

02/05/2018 CUNY | Brooklyn College 38

Operators

• Arithmetic operators

• Unary operators

• Equality and Relational operators (discussed in
more details later)

• Conditional operators (discussed in more details
later)

• Bitwise and bit shift operators (discussed in
more details later)

02/05/2018 CUNY | Brooklyn College 39

Arithmetic Operators

Operator Description

+ Additive operator (also used for String concatenation)

- Subtraction operator

* Multiplication operator

/ Division operator

% Remainder operator

02/05/2018 CUNY | Brooklyn College 40

Unary Operators

02/05/2018 CUNY | Brooklyn College 41

Operator Description

+
Unary plus operator; indicates positive value (numbers are positive
without this, however)

- Unary minus operator; negates an expression

++ Increment operator; increments a value by 1

-- Decrement operator; decrements a value by 1

! Logical complement operator; inverts the value of a boolean

Equality and Relational
Operators

02/05/2018 CUNY | Brooklyn College 42

Operator Description

==
equal to != not equal to > greater than >= greater than or equal to
< less than <= less than or equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Conditional Operators

• &&: Conditional-AND

• ||: Conditional-OR

• exhibit "short-circuiting" behavior

02/05/2018 CUNY | Brooklyn College 43

Bitwise and Bit Shift Operators

02/05/2018 CUNY | Brooklyn College 44

Operator Description

~ A unary operator that inverts a bit pattern

<< Signed left-shift operator

>> Signed right-shift operator

& Bitwise AND operator

| Bitwise (inclusive) OR operator

^ Bitwise exclusive OR operator

Questions

• Use command line arguments

• Flow controls

• Selection & iterations

• Classes and objects

• Objects and reference variables

• JVM stack and garbage-collection heap

• Primitive types and variables

02/05/2018 CUNY | Brooklyn College 45

About W01-2_01-31_0

• Simple & compound statement?

02/05/2018 CUNY | Brooklyn College 46

Assignments

• CodeLab assignments

02/05/2018 CUNY | Brooklyn College 47

