CISC 3120
C0O2: Overview of Software

Development and Java

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College



Outline

* Recap and issues

« Some concepts in software development
* Brief introduction to history of Java

* First Java program (from command line)
» Text-based application user interface

« Command line arguments

* Review concepts of class and object
* Assignments



How well am I doing?

* Check "My Grades” CUNY Blackboard
 Updated frequently



Attendance

* ¥Y: you arrived on time and signhed attendance
sheet

* N: you missed the class

* L: you signed attendance sheet, but the
instructor marked it as “late”

» X: you were excused with the support of
legitimate documentation



Individual Assignment

* Practice WO0O1-1_01-29
* Individual assignment
* A: Accepted

« U: Unaccepted, not submitted, or not submitted
on time.



Practice W01-1_01-29

* What shows up in Github classroom?
 Feedback method

« Comments on commits

 Any problems?

« Issue type 1: Accepted assignment, but did nothing. I don't
even know who you are (unaccepted)

« Issue type 2: The content of your file is wrong (unaccepted)

« Issue type 3: You did not create the folder for the
assignment (unaccepted)

* First assignment "give-away": fix your problem by before
the class on Monday (February 5)



Group Assignment

* Project O

* Group assignment

 Letter grade
 A: perfect or imperfect, I am very happy with what you team did.
* B: atf least three members completed the task.
* C: at least two members completed the task.
« D: at least one members completed the task.
* F: nothing is done.

* Letter grade to be posted after the class, and only issued to
contributors



Project O

* What shows up in Github classroom?
 Feedback method

« Comments on commits
 Any problems?
» Issue type 1: some members did not join the team in Github

» Issue type 2: some members joined, but did not make
contribution

« Issue type 3: contribution is being made, but content of the
file does not meet requirement

 First team assignment “give-away": complete the task
before the class on Monday, February 5.



Questions?

« Attendance

* Practice assignment
* Team Assignment
 Github issues



Suggestion

» Use Github Issue Tracking & Comments in
your assignments

* Practice assignment: manage your own to-do,
bugs, and other items

« Team project: manage to-do, bugs, other items;
delegate tasks to members

« Communicate with the fellow team members
and the instructor



Communicate Effectively

 Follow Stack Overflow,
* https://stackoverflow.com/help/how-to-ask

1/31/2018 CUNY | Brooklyn College

11


https://stackoverflow.com/help/how-to-ask

Questions?

* What are you suggestions and comments?



Develop Software Applications

» Apply engineering principles and scientific
techniques to software development

» Software engineering



Main Parties in Software
Development

» Two main parties: customers, designers

* Real word scenarios can be more complicated
about who the customers and designers are



Software Development
Activities
* Main activities

* Requirement analysis

* Architectural specification

* Detailed specification

« Implementation and unit testing

« Integration and testing

« Operation and maintenance



Waterfall Model

Requirements

specification —l
A

4

A

Architectural
design

H

Detailed design _l

A

A

Implementation

& unit testing —l

T Integration &

1/31/2018

testing —l

Operation &
maintenance

CUNY | Brooklyn College 16



Lots of Documentation




Software Development Process

« Waterfall vs. Spiral vs. Agile

1/31/2018 CUNY | Brooklyn College

18



Validation and Verification

* Validation

* Are we building the right product?
* Verification

 Are we building the product right?
* Testing



In CISC 3120 ..

-

L

* Projects '
= . Java

« The instructor is your customer

 You and your team members are the designers

* You deliver a verified product to the customer

« How does the software life cycle fit in?
* Learn to design and develop applications in Java

* Mostly concern about design, specification,
implementation, and testing

« Some object-oriented design and implementation



Java

* An Object-Oriented Programming language
developed after C++

* Designed for devices, later for the Web

* "Write once, run anywhere"
« Java Virtual Machine (JVM)

1/31/2018 CUNY | Brooklyn College 21



Warm-up Group Discussion

* Read a Java program
« Answer the given questions, and during the
process, think about the following,

« How much do you understand based on your knowledge
and experience in C++?

* What looks familiar to you?

* What looks new to you?



Your First Java Program

« Set up environment

 Check whether java and javac are present and what versions
they are

« Download and install JDK
 Create Java source code
« Use a text editor (e.g., notepad)
« Compile Java source code to generate Java byte code

 Use javac to compile the Java source code

 Run Java byte code in Java Virtual Machine

 Use java to run the Java byte code program



The "Hello, World" Program

Create the HelloWorld.java file

public class HelloWorld {
public static void main(String[] args) {
System.out.printin(*Hello, World");



Compile and Run

* From the command line:
 Compile
javac HelloWorld.java
* Run

java HelloWorld



Questions?

» Create Java program from scratch
» Compile Java program

* Run Java program



Command Line Interface

* Also called text-based interface
« Method to interact with applications
* Interaction is from text-based terminal
« Text input only

* In Java, the interaction is done via the main
method

* public static void main(String[] args)
* where "args"” are the command line arguments



The Beer Song

» A little big program that prints out the
lyrics of the song "99 bottles of beer”.



Interfacing BeerSong with
Command Line Arguments

« What if I want to start at 10 beers?



Questions

 Using command line arguments

» Writing applications with text-based
interface



Real-world Objects

« Examples
* Chairs, desks ...

« Student, instructor ...

» State and behavior



Software Objects

 State

« States are stored in fields (member variables in
C++, instance variables in Java, ...)

* Behavior

* Methods (member function in C++, instance
methods in Java, ...)
* Methods operate on an object's internal state

* Methods serve as the primary mechanism for object-
to-object communication.



Data Encapsulation

* Hide internal state

* Require interaction to be performed through
an object’'s methods



Using Objects

Modularity

« The source code for an object can be written and maintained independently.

Information-hiding

« With data encapsulation, the details of its internal implementation remain
hidden from the outside world.

Code re-use
« Use objects written by you and other developers in many applications

* Allow specialists to implement/test/debug complex, task-specific objects

Pluggability and debugging ease

* Can simply replace or diagnose problematic object



Real-world Classes

* Many individual objects are of the same kind
« Many classes you can take
* Many buses you can ride
 There are many students

* They are of the same "blueprint”

* A bus has different “color”, "capacity”, "route”
.., I.e., has the same set of fields, but different
values



Software Class

* A class is the blueprint from which individual
objects are created

* Fields and methods
* A class can have many instances



Design Java Program

» Identify objects and classes
» Identify fields and methods



The BeerSong Revisited

* More OOP way to write the BeerSong
program
» Two objects
* A BeerSong object
* A BeerSongDriver object

» Object-to-object interaction

« The BeerSongDriver object calls the method of the
BeerSong object



Questions

* Review a few concepts in Object-Oriented
Programming

* Objects
* Classes
* Fields & Methods

e State and Behavior



Assignments

 Assighment posted the Class Website and
the Blackboard

* Practice assignment

 CodelLab assignment



