CISC 3120
C18: Networking and

Network I/0O

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College



Outline

 Networking fundamentals
* Network interfaces

« Sockets and network I/0
* Multi-threading

* Client/server and peer-to-peer
architectures

* Object serialization



Sample Programs

» All sample programs are in the "network”
folder of the "sampleprograms” repository



Layered Architecture

 OSI model and TCP/IP

10/31/2017

oSl

Application

Presentation

Session

Transport

Network

Data link

Physical

TCP/IP
Application
T~ Not present
// in the model
Transport
Internet
Host-to-network

CUNY | Brooklyn College



Two Hosts and a Router

10/31/2017 CUNY | Brooklyn College



The Internet Architecture

(TCP/IP)

* Layering is not strict,

hourglass design,

representative implementation

F A A 00 a0
I N N Application
TCP UDP TCP UDP
. —~
e IP
g - xf—r Host-to-Network
NET, NET, NET,

Internet protocol graph.

10/31/2017 CUNY | Broo

Internet architecture.

klyn College




Network Protocol

» A distributed algorithm and associated data
structures for data communication over a
network

» Each layer may have many protocols



Host and Network Interface

* A host may have multiple network interface

A network interface typically implements
physical layer and link layer functionality (or
the host-to-network layer)

10/31/2017 CUNY | Brooklyn College



IP

* The Internet Protocol
» Communication protocol for hosts
» Transmit and receive IP packets

* To identify a host, use IP address or host
hame



IP Address

» Currently deployed Internet Protocols
« IP version 4 (IPv4)
« IP version 6 (IPv6)

* The very first field in an IP packet indicates the
version of IP protocol

* Globally unique except local networks & private
networks

« Hierarchical (network number + host number)



IPv4 Address

» 32 bit infeger
* Divided into two parts

* Network number and host number (using prefix or
network mask)

 Human-readable form

» IPv4 numbers-and-dots notation, each number
corresponds to a byte in the address

» Example: 146.245.201.50

* Facing exhaustion of address space, moving
to IPv6



IPv4 Private Networks

* Private networks
 Not routable in a public network
 24-bit block 10.0.0.0-10.255.255.255
« 20-bit block 172.16.0.0-172.31.255.255
* 16-bit block 192.168.0.0-192.168.255.255



IPv4 Link Local and Loopback
Address

 Link local address
* Not routable

* For configuration purpose

« 169.254.0.0/16 (16 bit block: 169.254.0.0 -
169.254.255.255)

* Loopback address

* Only stay within the host

« 127.0.0.0/8 (24 bit block: 127.0.0.0 -
127.255.255.255)



Broadcast, Multicast, and
Unicast

* The addresses are divided into broadcast,
multicast, and unicast address

* Broadcast address: all 1's in the network number
for the network

« TPv4 Multicast: 224.0.0.0/4 (224.0.0.0 -
239.255.255.255)



A Few IPv4 Address Types

Private Network

Loopback

Link-local Unicast
Documentation (TEST-NET-1)

Documentation (TEST-NET-2)

Documentation (TEST-NET-3)

Multicast
Global Unicast

1100 0000 1010 1000

1010 1100 0001
1010 0000
01111111
1111111010

1100 0000 0000 0000 0000 0010
1100 0110 0011 0011 0110 0100

1100 1011 0000 0000 0111 0001

1110

192.168.0.0/16
172.16.0.0/12
10.0.0.0/8
127.0.0.0/8
169.254.0.0/16
192.0.2.0/24
198.51.100.0/24
203.0.113.0/24
224.0.0.0/4

Everything else (with exceptions)



IPv6 Address

» 128 bits/16 bytes in length
 IPv6 Notation: a human friendly text representation

« X:X:X:X:X:X:X:X Where x is a 16-bit (or 2-byte)
hexadecimal number, e.g.,
e 477CD:1234:4422:AC02:0022:0022:1234:A456

« Contiguous Os can be compressed, e.qg.,
« 47CD:0000:0000:0000:0000:0000:A456:0124

e can be written as
e 477CD::A450:0124



A Few IPv6 Address Types

Unspecified 00..0 (128 bits) ::/128
Loopback 00..1 (128 bits) ::1/128
Multicast 1111 1111 FFOO::/8
Link-local Unicast 1111 1110 10 FES0::/10
Private Network 1111 110 FC00::/7

Documentation 0010 0000 0000 0001 2001:0DB8::/32
0000 1101 1011 1000

Global Unicast Everything else (with exceptions)



Look up Host IP Address

* Be aware that a host may have multiple IP
addresses since an IP address is assigned to a
network interface on a host

* Windows
* ipconfig
* Mac OS X
- ifconfig
* Linux
* ip address or ifconfig



Host Name

* A host can also be identified by its name

* Domain Name Service (DNS)

* A global name database
« Example

« www.brooklyn.cuny.edu
« www.google.com
« Communications are done using IP addresses

« DNS provides translation



Look up a Host's IP address

* Use nslookup, available on many operating
systems (Windows, Mac OS X, Linux ...)

« Example
* nslookup www.google.com

* nslookup www.brooklyn.cuny.edu



Work with Network Interface

» See LinkNetInterfaceExplorer in the
network folder of the sampleprograms
repository

* In Java, use java.net.NetworkInterface to
deal with network interfaces on a host



Questions

* Network architecture and layered model
» Host, node, and network interface

« TP addresses
« IPv4 and IPvé
* Practical operations

* Look up hosts' IP addresses

« Examine network interfaces



TCP and UDP

 Transport Control Protocol
 User Datagram protocol

« Communication protocol for processes (a
process represents a running program)




UDP

 User Datagram Protocol
* Transmit independent datagram one at a
Time
« Communication is hot reliable
 No guarantee the order of datagrams

* No guarantee the delivery of datagrams



TCP

* Connection-oriented reliable byte stream
 Must establish connection

 Guarantee delivery of data, otherwise, an error
IS reported

* Create an abstraction data are transmitted or
received one byte at a time

* Maintain the order of the data



TCP and UDP Port Numbers

» UDP port numbers
« 16 bit integer

 Use them to differentiate different processes
on a host

* TCP port numbers
« 16 bit integer

» Use them to differentiate different processes
on a host



List TCP/UDP Port Statistics

Use netstat , available on many operating systems (Windows, Mac OS
X, Linux ...)

Windows

« Examples

« netstat -n -o -p TCP; netstat -f -o -p TCP; netstat -n -o -p UDP; and netstat -f -0 -p
TCP

Linux

« Examples

* netstat -n-p -a -t; netstat -p -a -t; netstat -n -p -a -u; and netstat-p -a -u
Mac OS X

« Examples

* netstat -n -a -p tcp; netstat -a -p tcp; netstat -n -a -p udp. and netstat -a -p udp;



Some Practical Considerations

* Are the port (TCP, UDP, both) available to to
use in the program?
« 1-1023 are privileged
* Registered ports
« Well-known ports (iana.org)

« See /etc/services on Mac OS X, or, Linux or Unix

« See C:\Windows\system32\drivers\etc on Windows

* Does the host-based or network-based firewall

get in your way (at home, at the college, or at
the coffee shop ...)?



Programming with TCP and UDP

* Most network applications uses TCP or UDP to
communicate

 Program at the application layer for Java application
» Typical no need to concern with TCP or UDP

 Use java.net package or other network related packages

 TCP communications: The Socket, ServerSocket, URL, and
URLConnection classes

« UDP communications: The DatagramPacket,
DatagramSocket, and MulticastSocket classes



Socket

* An end-point of a two-way communication link
between two programs running on the network

« A combination of IP address and port number

» Socket classes

* Represent the connection between a client program
and a server program.

« Socket class: for the client side of the connection

« ServerSocket class: for the server side of the
connection

* Low-level communication directly using TCP



Client-Server Application using
Socket

* A server programs runs on a host and has a socket that is bound to a port number.
* The server just waits, listening to the socket for a client to make a connection request.

* The client attempts to connect to the server program by using the endpoint's address and
port.

To identify itself to the server, the client binds to a local port number (usually assigned by the
system) that it will use during this connection.

* When the server accepts the connection, the server does the following,

It gets a new socket bound to the same local port and also has its remote endpoint set to the
address and port of the client.

It creates a new socket so that it can continue to listen to the original socket for connection
requests while tending to the needs of the connected client.

* On the client side, if the connection is accepted, a socket is successfully created and the
client can use the socket to communicate with the server.

« The client and server can now communicate by writing to or reading from their sockets.



Example: FileDownloader

« See the FileDownloader in the
sampleprograms repository

* Can you use try-with-resources to make it
cleaner?



Use Datagram

* Datagram
* Independent, self-contained message

 Unreliable: there is no guarantee on arrival,
arrival time, and order of arrival

« UDP communications: The DatagramPacket,
DatagramSocket, and MulticastSocket
classes

» Often use for broadcasting or multicasting



Example: PingPongMessenger

« See the UdpPingPongMessenger in the sampleprograms repository

» Server

* Create a DatagramSocket bound to one or more addresses and a listening port,
both of the server

* Receive a packet
* Prepare and Send a reply packet
* Client
* Create a DatagramSocket, let JVM/OS determine the port number
 Prepare and send a packet, filled with destination address and port number

* Receive a packet



Datagram Multicasting

* One important use case of Datagram is to
realize multicasting

 Multicasting: one-to-many

* Where do you think multicast can be very
helpful (or what application may be better
off to use multicast than unicast?) How is it
being helpful?



Example: MulticastDemo

 See the UdpMulticastDemo in the
sampleprograms repository

« Server
« Create multicast group using a multicast address
 Send packets to the multicast group

* Clients

* Join the multicast group

* Receive packets from the server



Questions

« TCP and UDP

 When to use them?

* Practical consideration
« TCP and UDP in practice

» Sockets and network I/0



Let's look at another example

» TcpMessengerHalfDuplex



Communication Channel

* Simplex
* Half duplex
* Full duplex



How do we achieve full-duplex?

» Two programs (processes) at each side
 One does receiving
* One does transmitting

* Two threads at each side

 One does receiving

* One does transmitting



Process and Thread

* Processes and threads exist to support
multitasking
* Process

A program in execution and associated data
structures (e.g., a process control block)

* A process may have one or more threads of
execution



Process and Thread: Comparison
T e tvead

Address
space

States and
Controls

Interfacing

Context-switch

10/31/2017

A process usually has its own
address space (implication: two
processes cannot access each
other’s variables)

Processes usually have larger set
of states and supporting data
structure

Inter-process communication

(IPC)

Generally slower than threads

CUNY | Brooklyn College

Multiple threads of a process
shares the same address space
(implications: they can access the
process’s variables)

Multiple threads of a process
shares share the process states
and other resources, in addition
to memory

Share the process memory

Generally faster than processes
when switching between
different processes

42



Multithreading in Java

 Two approaches
* Implementing the Runnable interface

 Extending the Thread class

* Prefer to implementing the Runnable
interface



Multithreading: Text-based App
Example

» See TcpMessengerThreadedFullDuplex in
the network directory of the
sampleprograms repository

* One thread deals with InputStream of a
Socket

* One thread deals with OutputStream of the
Socket



Multithreading: JavaFX App
Example

» See TcpMessenger in the network directory
of the sampleprograms repository

* One thread deals with listening, accepting
and InputStream of a Socket

* An EventHandler deals with OutputStream
of the Socket



Network Applications

 Client-Server

e Peer-to-Peer
* Hybrid



Questions

* Channel
» Simplex, half-duplex, full-duplex
* Application
» Client/server, peer-to-peer, hybrid

* Process and threads

» Application examples



Questions

* Networking fundamentals
* Network interfaces

« Sockets and network I/0
* Multi-threading

* Client/server and peer-to-peer
architectures



Assignments

* Practice

* Project 4



