CISC 3120
C14: JavaFX: Overview and

Programming User Interface

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Outline

* Recap and issues
* Architecture and features of JavaFX
« JavaF X build-in UT elements

* Assignments

Recap and Issues

* Projects
* Project1&2
« Upcoming project: project 3
« GUT application
* Midterm
 Grades to be posted by Thursday, October 19

* Group-discussion on the "HelloWorldFX"
application

Lessons from Project 1

« Java naming convention

» How should you name constants and variables?
» Improving reading & coding difficulty

* Using literals

 Named constants are better

* Divide-and- conquer: writing methods

Naming Constants and Variables

* Which one of the two should you write
according to the Java coding convention?

final static int GAME_BOARD_WIDTH = 80;

final static int gameBoardWidth = 80;

* Which one of the two should you write?
int GAME_BOARD_WIDTH = 80;

int gameBoardWidth = 80;

Naming Constants

* Which one of the two should you write
according to the Java coding convention?

final static int GAME_BOARD_WIDTH = 80;

final static int gameBoardWidth = 80;

* Which one of the two should you write?
int GAME_BOARD_WIDTH = 80; x

int gameBoardWidth = 80; V

10/10/2017 CUNY | Brooklyn College

Using Literals

« Which one is easier to understand when you
read?

if (humGuesses < 10) {

-

final static int MAX_ALLOWED_GUESSES = 10;

if (humGuesses < MAX_ALLOWED_GUESSES) {

Divide-and-Conquer: Writing

Methods

 Which one is easier to read and code?

public class TargetGamelLauncher

{

public static void main(String[]args) {
CommandLineParser parser = new DefaultParser();
int gameWidth = 80, gameHeight = 25, gamelLevel = O;
Options options=new Options();
options.addOption("w","width", true,"width parameter");
options.addOption("h","height", true "height parameter");
options.addOption("l","level", true,"level parameter");

try {
CommandLine line = parser.parse(options, args):
if(I(line.getOptionValue("w")==null))
w = line.getOptionValue("w");
gameWidth = Integer.parseInt(w);
} ca‘rc.P;"('Par‘seExcep‘rion exp) {
}
TargetGame game =
new TargetGame(gameWidth,gameHeight,gamelevel);

game.play();

public class TargetGamelLauncher

{

public static void main(String[] args) {
parseGameOptions(args):
TargetGame game =
new TargetGame(gameWidth,gameHeight,gamelevel);

game.play();

private static void parseGameOptions(String[] args){ ...

private static int gameWidth;
private static int gameHeight;
private static int gamelevel;

Questions?

* Lessons from Project 1
« Java naming convention
* Using literals
* Divide-and-conquer: writing methods

"Programs must be written for people to read, and only
incidentally for machines to execute.”

-- H. Abelson and 6. Sussman (in
"The Structure and Interpretation of Computer Programs”)

i

10/10/2017 CUNY | Brooklyn College

Discussed the "HelloWordFX"
App in Groups

 What did we learn from it?

* What were your questions?

Writing JavaFX GUI
Application

* Overview of JavaFX
« JavaFX application life cycle
« JavaFX application structure

» Write JavaFX application from scratch
* Learn new ones from existing knowledge and skills
* Learn to use Java APT documentation
* Learn a few concepts in GUI and computer graphics

* Learn to reuse JavaFX build-in UL components

JavaFX Overview

« A Java API

» Consisting of classes & interfaces in a few Java
packages

* Dealing with graphics and media
» for creating rich client applications

 whose look & feel are customizable via Cascading Style
Sheets (CSS)

* cross platforms
 Desktop, mobile, embedded, and the Web

JavaFX Architecture

Tasa TV Dbilin AD e oo d €
aFX Public APls and Scene Graph

L Prism ' Glass Windowing Toolkit || Media Engine Web Engine

-/

.........................

(Java 20 |(OpenGL j{ D3D EI -

& 3 <) JDK API Libraries & Tools
>

B e Vot i

* Develop apps with JavaFX public APIs and JDK
API libraries and tools

 Powered by JVM, Graphic System, and
Windowing toolkit

10/10/2017 CUNY | Brooklyn College

13

Features of JavaFX

« Graphics: supports DirectX and OpenGL, software render fallback (via Prism, OpenGL, Direct3D)

« 3D graphics: supports light sources, material, camera, 3-D shapes and transformations; Common visual
effects

+ Interfacing with native operating systems fo provide windows management, timers, and event
queues (Glass windows toolkit)

* Multimedia: support playbacks of web multimedia content based on the GStreamer multimedia
framework (Media engine)

« Web: provides a Web viewer and full browsing functionality based on WebKit (Web engine)
* Multi-threaded: concurrent application, Prism render, and media threads (Quantum toolkit)

« Text: supports bi-directional text and complex text scripts

« I/O devices: supports multi-touch and Hi-DPT
* Build-in UT controls, layouts, themes, and CSS styling
« Swing interoperability

« JavaFX APT: application lifecycle; stage; scene; transition & animation; canvas; print; event; css;
fxml; collections; utils; Java beans; javascript

10/10/2017 CUNY | Brooklyn College 14

https://www.opengl.org/documentation/
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx
https://gstreamer.freedesktop.org/features/
https://webkit.org/
https://en.wikipedia.org/wiki/Bi-directional_text
https://en.wikipedia.org/wiki/Complex_text_layout
http://docs.oracle.com/javase/8/javafx/api/toc.htm

JavaFX API

* Full package list at
http://docs.oracle.com/javase/8/javafx/api/toc.htm

javafx.application: provides the application life-cycle classes.
javafx.stage: provides the top-level container classes for JavaFX content.

javafx.scene: provides the core set of base classes for the JavaFX Scene Graph
APT.

javafx.scene.control: prebuilt UT control classes
javafx.scene.text: provides the set of classes for fonts and renderable text.

javafx.scene.layout: prebuilt container classes defining user interface layout.

10/10/2017 CUNY | Brooklyn College

15

http://docs.oracle.com/javase/8/javafx/api/toc.htm

JavaFX Stage and Scene

“All the world's a stage, and all the men and women merely
players.”

-- As You Like It, Act IT, Scene VII, William Shakespeare

10/10/2017 CUNY | Brooklyn College 16

JavaFX Stage

* A JavaFX runtime constructs a primary stage
- java.stage.Stage: the top level JavaFX container

* Visually represented by a "window" in windows-based
operating systems (such as, Windows, Mac OS X)

 An applications can construct additional stage

 The application needs to construct and set scenes for
a stage

« JavaFX scene graph

10/10/2017 CUNY | Brooklyn College

JavaFX Scene Graph

» Represent visual elements of user interface.

* Elements can be displayed inside a window
* Handles input.

* Can be rendered.

Scene Graph

* Elements organized as a hierarchical
structure, like a tree.
 An element in a scene graph is called a node.

 Each non-root node has a single parent.

 Each node has zero or more children.

Root Node
‘/V—\
Node Node | ... Node

—
Node Node

Node in Scene Graph Tree

« Example nodes

» a layout container, a group, a shape, a button ...

 Each node has an ID, style class, bounding volume, and
other attributes

« Effects, such as blurs and shadows

* Opacity

* Transforms

« Event handlers (such as mouse, key and input method)
* An application-specific state

« javafx.scene.Node: abstract class

Working with Scene Graph

* Packaged in javafx.scene
* Nodes (elements)

- javafx.scene.Node: abstract class

« UI controls, text, charts, containers, shapes (2-D and 3-D),
images, media, embedded web browser, and groups

 State

« Transforms (positioning and orientation of nodes), visual
effects, and other visual state of the content

« Effects

« Simple objects that change the appearance of scene graph
nodes, such as blurs, shadows, and color adjustment

JavaFX Application

* Entry point: the Application class

- javafx.application. Application

* abstract void start(Stage primaryStage)

JavaFX Application Life-Cycle

« JavaFX runtime does the following, in order,

Constructs an instance of the specified Application class (via the
launch(String[] args) method)

Calls the init() method that can be overridden

Calls the start(javafx.stage.Stage) method that must be overridden
in subclass)

Waits for the application to finish, which happens when either of the
following occur:

« the application calls Platform.exit()

+ the last window has been closed and the implicitExit attribute on Platform is
true

Calls the stop() method (can be overridden)

JavaFX Application: Remarks

 The start(javafx.stage.Stage) is an abstract method,
and must be overridden in the subclass

* The init() and stop() method have concrete
implementations, but do nothing, and can be overridden.

 Explicitly tferminating JavaFX application
* calling Platform.exit() is the preferred method

* Calling System.exit(int) is acceptable, but the stop() method
will not run.

« JavaFX should not and cannot be used after
System.ext(int) is called or the stop() is returned.

Questions?

« JavaFX architecture and features (from
10,000 feet high)

« JavaF X stage and scene
 JavaFX application cycle

Write the First JavaFX
Application from Scratch: Demo

"Everything should be built top-
_ down, except the first time."

-- Alan Perlis

10/10/2017 CUNY | Brooklyn College 26

Write the First JavaFX
Application from Scratch: Demo

* Create a concrete subclass extending the JavaFX
Application class (javafx.application.Application)

* (Curtains down) Construct a scene graph containing
a tree of nodes

« The simplest tree contains a single root node (select a
concrete subclass of nodes)

 http://docs.oracle.com/javase/8/ javafx/api/ javafx/scene/Node
html

* Set scene for the stage
* (Curtains up) Show the scene

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html

Java API Documentation

* Class documentation * Properties
+ Package hierarchy Public instance variables
« Class name * Fields
+ Implemented interfaces ' igggfaﬁléss variables and
« Known subclasses . Constructors
* Class declaration line . Methods
« Abstract or concrete + Method summary
* Super class « Methods inherited

* Description Property detail

« Compatibility

ava API Documentation

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES
SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAIL: FIELD | CONSTR | METHOD

javafx.scene

Class Node

java.lang.Object

javafx.scene.Node

All Implemented Interfaces:

Styleable, EventTarget

Direct Known Subclasses:

Camera, Canvas, ImageView, LightBase, MediaView, Parent, Shape, Shape3D, SubScene, SwingNode

@IDProperty(value="id")

public abstract class Node
extends Object

implements EventTarget, Styleable

Base class for scene graph nodes. A scene graph is a set of tree data structures where every item has zero or one p
sub-items.

Since:

JavaFX 2.0

Property Summary

CURIELETEE] Instance Methods | Concrete Methods

Type Property and Description

ObjectProperty<String> accessibleHelp
The accessible help text for this Node.

10/10/2017 CUNY | Brooklyn College

29

GUI Windows

tiths min/man button olhse button

csize] N
 Shape

* Title

. Tcon Typieal MS Wirdows

* Modality Widoo

. Visibility |

10/10/2017 CUNY | Brooklyn College 30

Scene Node Coordinate System

* A traditional computer graphics "local”
coordinate system (javafx.scene.node)

(00) = E
Hight

A E horizontal =~ helpht
:.' /0&/'5/0/(A~ width s

—t

Static Factory Method

» A static method that returns an instance of
the class

« Examples:

 static Color hsb(double hue, double saturation, double
brightness, double opacity)

« static Color rgb(int red, int green, int blue, double
opacity)

* In your application design: advantage and
disadvantage?

Color Space

* Color is a human perception
* (Mathematical) models for color are developed

* Including a model for human perceptual color space

« Examples
* Machine first
« Additive: Red-Green-Blue (RGB)
* Subtractive: Cyan-Magenta-Yellow-Black/Key (CMYK)
* Human first
* Hue-Saturation-Brightness (HSB)
* Processing first

* LAB (Luminance and a & b color channels)

Standard Red-Green-Blue
(sRGB)

* Red, Green, Blue -,
- 0.-1.

* Alpha (fransparency or
opacity)

« 00-100r0-255;1.0r
255

* 0. or O: completely opaque

* 1. or 1: completely
transparent

10/10/2017 CUNY | Brooklyn College 34

Hue-Saturation-Brightness
(HSB)

Hue:
« 0.-360.

* Saturation:

- 0.-1.
* Brightness (or Value): S
. 0.-1, s
« Alpha (transparency or
opacity)

« 00-100r0-255;1 0or 255
« 0. or 0: completely opaque

« 1. or 1: completely transparent

10/10/2017 CUNY | Brooklyn College 35

Blocking and Non-Blocking

* The show() method of a Stage object does
hot block the caller and returns
“immediately”.

* The showAndWait() method of a Stage
object shows the stage and waits for it to
be hidden (closed) before returning to the
caller.

* Cannot be called on the primary stage

Events

* Representing arrivals of inputs

* Mouse events

* Mouse pressed, mouse released, mouse clicked
(pressed & released), mouse moved, mouse entered,
mouse exited, mouse dragged

« Keyboard event

 Key pressed, key released, key typed (pressed &
released)

» Gesture event, touch event, ...

Events

« Event source
« where (an object) an event is being handled

« The object needs to have an event handler

* Event target

« Specifies the path an event travels (from one object
to another)

* Event type

« Additional classification to events of the same Event
class.

Handling Events

* Register an event handler for an object

« Implements the EventHandler<T extends Event>
interface and create an object for the event handler

 Set the event handler of the object as the event
handler object

« An object often has a number of convenient setter
methods

« setOnMouseClicked, setOnMouseEntered,
seOnMouseExited ...

* More generic method: addEventHandler

Write the First JavaFX
Application from Scratch: Demo

» Can we have multiple scenes?
* How do we improve readability?
« Use named constants

 Can we add more children to a scene graph?

» Can we have multiple stages (windows)?

Group Group

} I

Rectangle Circle

Questions?

* Wrote the first JavaFX application from scratch (how?)
* How to read Java API documentation
« Windows concept: components, styles, and modality
« Graphics concept: colors, local coordinate system, strokes & fill

« Example: in the javafx.scence.Node class
setStroke(Paint value)
« setFill(Paint value)
* Design pattern: static factory method
« Example: in the javafx.scene.paint.Color class

static Color rgb(int red, int green, int blue)

 static Color hsv(double hue, double saturation, double brightness)

Write Larger JavaFX
Applications

UT controls: prebuilt user interface controls

Use texts

Layout containers: prebuilt layouts for UT controls and more
Handle user interactions and other events

Use graphics, transformation, and effects, charts, multimedia, and
web viewers

Style user interface using CSS and themes
Design user interface with provided tools and libraries

- FXML
* Model-View-Controller (MVC) design pattern

Concurrency and other features

User Interface Components

« UI controls

* Layouts

* Text

* Charts

« HTML content & embedded web browser
* Shapes (2-D and 3-D)

* Images

* Groups

Use Build-in UI Controls and
Layouts

» UI controls: prebuilt user interface controls

 Use texts

* Layout containers: prebuilt layouts for UL
controls and more

» Use 2D graphics

 Handle user interactions with simple event
handlers

UI Controls

* Packaged in javafx.scene.control

* Label

* Button

* Radio Button

« Toggle Button
* Checkbox

* Choice Box

« Text Field

+ Password Field
« Scroll Bar

« Scroll Pane

List View

Table View

Tree View

Tree Table View
ComboBox
Separator

Slider

Progress Bar
Progress Indicator

Hyperlink

Tooltip

HTML Editor
Titled Pane
Accordion

Menu

Color Picker

Date Picker
Pagination Control

File Chooser

10/10/2017

A Gallery of Selected
Controls

» Node 1

Yellow

¥ Node 2
~ ;, ' «Orange .=I I Hiperlink
ring —
» Node 3 | Blue Button

Accordion Check Boxes Color Button Graphic Button Hyperink

Row 1

| Row 2

lOPqus v | Row 1l Row 2 L

Long Row 3

Radio Buttons Toggle Button Horizontal List View Simple List View

First

Jacob

Isabella

Ethan

Progress Bar Progress Indicator

Simple
Label

Child Node 1

Some text ‘ Child Node 2

Graphic

Label

Advanced Label Text Feld Tool Bar

CUNY | Brooklyn College

46

Explore UTI Controls

* Using the JavaFX Ensemble 8 sample

application

* Ensemble 8 is in the
“sampleprograms”
repository

* Open it as a Maven project

* Run the
ensemble EnsembleApp
class

o Accordion

o Hidden SplitPane

Samples

' ' v W ' v W ' v g
=

|

|

|

|

K

| S—

Text

* Packaged in javafx.scene.text.Text

e | Text class inherits from the Shape class, and

~ the Shape class inherits from the Node class

* You can apply effects, animation, and transformations

Shape to text nodes in the same way as to any other Nodes.

/\ * you can set a stroke or apply a fill setting to text
nodes in the same way as to any other Shapes.

Text

Layout Containers (Panes)

* Packaged in javafx.scene.layout

« Arrangements of the UTI controls within a scene graph

* Provide the following common layout models

« BorderPane
« HBox

« VBox

« StackPane

e GridPane
* FlowPane
e TilePane

* AnchorPane

Explore Layouts

* Using the JavaFX Ensemble 8 sample

application s
= Back Samples
¢ Run The o AnchorPane
ensemble.EnsembleApp g —
CIGSS o GridPane
Q Heo
o StackPane
Q rilerane

=
W' W ' W' W W' W' W M

2-D Graphics

* Draw images on Canvas
* Canvas

- javafx.scene.canvas.Canvas

 Using a set of graphics commands provided
by a GraphicsContext.

 GraphicsContext

» javafx.scene.canvas.GraphicsContext

Canvas canvas = new Canvas(WIDTH, HEIGHT);
GraphicsContext gc = canvas.getGraphicsContext2D();

Use Build-in UI Controls and
Layouts: Demo

» Write a JavaFX application with prebuilt UT
controls and layouts

UI Design: Main Scene

* Perhaps, sketch on a piece of paper

Canvas
winlbrash [hickness
Fatbrash Color VBor

y 2
177100%
10/10/2017 CUNY | Brooklyn College 53

UT Design: Brush Thickness

* Perhaps, sketch on a piece of paper

—[%

10/10/2017 CUNY | Brooklyn College

Demonstrate JavaFX in Sample
Applications

 The applications are in the "sampleprograms”
repository

« JavaFX Ensemble 8
* Modena

« MandelbrotSet

« 3D Viewer

* In addition to build-in UL controls and layouts,
you should explore the following features ...

Effects, Animation, and Media

e Visual effects
« 2D and 3D transformations
* Transitions and animation

* Incorporate media

Visual Effects

* Packaged in javafx.scene.effect
* Drop shadow
* Reflecting
* Lighting

2-D and 3-D Transformations

» Packaged in javafx.scene.transform
* Translate
* Scale
 Shear
* Rotate
* Affine

Assignments

* Via CUNY Blackboard

* Practice assignment

* Project 3

Questions?

« JavaFX build-in components
» UI controls
« Text
* Layouts
 UT design

» Sample applications for exploring JavaFX
features

* Assignments

