
CISC 3120

Class Projects: Project 2 and 
Version Control Systems

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/28/2017 1CUNY | Brooklyn College



Project 1 Evaluation

9/28/2017 CUNY | Brooklyn College 2

• Requirements

• 4 basic requirements

• Input validation, maximum guess, game level, command line arguments

• 2 bonus requirements

• Game board area and game statistics, 3rd party library

• Grading scheme

• Accepted or unaccepted for each requirement

• Basic requirements: 4 accepted = A; 3 accepted = B; 2 accepted = C; 
1 accepted = D

• Bonus requirement: 1 – 2 accepted = one letter grade upgrade (A is 
upgraded to A+)



Project 1 Survey

• Two surveys

• Peer evaluation

• Mandatory: yon won’t get a grade until you complete it

• Course feedback

• Voluntary: you are encouraged to provide feedback

9/28/2017 CUNY | Brooklyn College 3



What did we learn from our 
experience? 

9/28/2017 CUNY | Brooklyn College 4



What you might have learned

• Project logic and resources should be organized in a 
manageable fashion

• https://github.com/trending/c++

• https://github.com/trending/java

• …

• Application design

• How do you decompose the project logic and resources into 
multiple components?

• How do these components interact?

• Is there a better design?

9/28/2017 CUNY | Brooklyn College 5



Project 2: Enhancing the Target 
Game

• Design with inheritance and polymorphism

• Group discussion (after a review and 
discussion on Version Control Systems)

9/28/2017 CUNY | Brooklyn College 6



Tool Support for Team Work

• Version control system

• Summary of your experience

9/28/2017 CUNY | Brooklyn College 7



Version Control System (VCS)

• Why do we need it? 

• https://stackoverflow.com/questions/1408450/

9/28/2017 CUNY | Brooklyn College 8

“Have you ever:

Made a change to code, realised it was a mistake and wanted to revert back?
Lost code or had a backup that was too old?
Had to maintain multiple versions of a product?
Wanted to see the difference between two (or more) versions of your code?
Wanted to prove that a particular change broke or fixed a piece of code?
Wanted to review the history of some code?
Wanted to submit a change to someone else's code?
Wanted to share your code, or let other people work on your code?
Wanted to see how much work is being done, and where, when and by whom?
Wanted to experiment with a new feature without interfering with working code?



Team Support with VCS

• VCS provides a “centralized” location to 
store project files

• Versioned code, configuration files, build scripts 
…

• VCS tracks each contributors’ individual 
changes 

• VCS helps prevent concurrent work from 
conflicting

9/28/2017 CUNY | Brooklyn College 9



Benefits of VCS

• Branching & merging.

• Example workflow: branching for each feature, branching 
for each release. 

• Traceability

• Example use scenarios: track changes between revisions of 
a project, documented history of who did what and when

• Complete history of changes

• Example use scenarios: help in root cause analysis for bugs, 
fix problems in older versions of software that has been 
released, roll back to an older version without newly 
introduced bugs

9/28/2017 CUNY | Brooklyn College 10



Centralized vs. Distributed

• Centralized VCS

• Examples: Revision Control System (RCS), 
Concurrent versions systems (CVS), Subversion 
(SVN)

• Distributed VCS

• Examples: Git, Mercurial (hg)

9/28/2017 CUNY | Brooklyn College 11



Basic VCS Operations

• Check out/update: copying the repository to 
the machine you are working at

• Check in/Commit: copying the changes you 
made to the repository and creating a new 
version

• Branch: create a new “child” development 
from a state of the repository

9/28/2017 CUNY | Brooklyn College 12



Example: Centralized Workflow

9/28/2017 CUNY | Brooklyn College 13

commit (check in)



Merge Conflicts

• A conflict may occur when two developers edit 
the same file

• Merge

• The developer that tries to commit the file last will 
have to combine her changes with those of the prior 
developer

• Many VCS’s (e.g., git) may automatically combine the 
changes

• Developers may have to merge the changes by hand

9/28/2017 CUNY | Brooklyn College 14



Question: A Merge?

9/28/2017 CUNY | Brooklyn College 15

• How would you revise this graph to illustrate 
when a merge is required?



Distributed Version Control

• Possible to commit locally without upsetting 
the others

• Allow more flexibility and support different 
kinds of workflow

9/28/2017 CUNY | Brooklyn College 16



Example: Distributed Workflow

9/28/2017 CUNY | Brooklyn College 17

commits commits

Remote Repository



Final Thought

• “There are no winners on a losing team, and 
no losers on a winning team.” 

— Frederick Brooks Jr.

9/28/2017 CUNY | Brooklyn College 18



Questions

• Projects 1 & 2

• Learning from experience: Version Control 
Systems

9/28/2017 CUNY | Brooklyn College 19


