
CISC 3120

C08: Inheritance and
Polymorphism

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/19/2017 1CUNY | Brooklyn College

Outline

• Recap and issues

• Project progress?

• Practice assignments?

• CodeLab?

• Review guide?

• Inheritance

• Polymorphism via inheritance

• Type casting

• Assignments

9/19/2017 CUNY | Brooklyn College 2

Class and Type

• A class defines a type, and often models a
set of entities

• Build a system for managing Brooklyn
College, we consider

• People, a set of individuals (objects), modeled as
a class that defines the set of objects

9/19/2017 CUNY | Brooklyn College 3

People at Brooklyn College

Subtypes

• Some people at Brooklyn are different from
the others in some way

• Professors and students are subtypes of
Brooklyn College People

9/19/2017 CUNY | Brooklyn College 4

People at Brooklyn College

Professors Students

Type Hierarchy

• Characteristics and behavior

• What are Students and Professors in common?

• What are Students and Professors different?

9/19/2017 CUNY | Brooklyn College 5

People at Brooklyn
College

Professors Students

What’s in common?

• What characteristics (attributes) and
behavior (actions) do People at Brooklyn
College have in common?

• Characteristics (attributes): name, ID, address,
email, phone, …

• Behavior (actions): change address, apply
parking, …

9/19/2017 CUNY | Brooklyn College 6

What’s Special?

• What’s distinct about students?

• Characteristics (attributes): classes taken, tuition
and fees, …

• Behavior (actions): add class, drop class, pay tuition,
…

• What’s distinct about professors?

• Characteristics (attributes): course taught, rank,
title, …

• Behavior (actions): register grade, apply promotion, …

9/19/2017 CUNY | Brooklyn College 7

Inheritance & Type Hierarchy

• A subtype (child) inherits characteristics
(attributes) and behavior (actions) of its
base type (parent)

9/19/2017 CUNY | Brooklyn College 8

People at Brooklyn
College

Professors Students

- Name, ID, address,
phone, …

- Change address,
apply parking …

- Class taken, …
- Add class, …

- Class taught, …
- Register grades, …

Questions

• Concepts of

• Type, subtype, class, subclass

• Inheritance

9/19/2017 CUNY | Brooklyn College 9

Super Type (Super Class):
Person
public class Person {

protected String name;

protected String id;

protected String address;

public Person(String name, String id, String address) {

this.name = name; this.id = id; …

}

public void changeAddress(String address) { …

}

… }

9/19/2017 CUNY | Brooklyn College 10

Subtype (Subclass): Student

public Student extends Person {

private ArrayList<String> classesTaken;

public Student(String name, String id, String address) {

super(name, id, address);

classesTaken = new ArrayList<String>();

}

public void haveTakenClass(String className) { …

}

public void showClassesTaken() { …

}

…}
9/19/2017 CUNY | Brooklyn College 11

Subtype (Subclass): Professor

public class Professor extends Person {

private final static int SABATTICAL_LEAVE_INTERVAL = 7;

private int yearStarted;

public Professor(String name, String id, String address, int yearStarted) {

super(name, id, address);

this.yearStarted = yearStarted;

}

public void applySabbatical(int applicationYear) { …

}

…}

9/19/2017 CUNY | Brooklyn College 12

Control Access to Members

Modifier Class Package Subclass World

public Yes Yes Yes Yes

protected Yes Yes Yes No

(no modifier) Yes Yes No No

private Yes No No No

9/19/2017 CUNY | Brooklyn College 13

… protected String name; …

Choose Access Control Level

• Goal: you want to reduce the chances your class
is being misused. Access levels is to help achieve
it.

• Use private unless you have a good reason not to.

• Use the most restrictive access level that makes
sense for a particular member.

• Avoid public fields except for constants. (Public
fields tend to link you to a particular implementation
and limit your flexibility in changing your code.)

9/19/2017 CUNY | Brooklyn College 14

Constructors

• Initialize attributes of an object when it is
being created (or instantiated)

• Subclass’s constructor

• Java will call the parent class’s default
constructor if you do not call one of parent’s
constructors explicitly.

• You may explicitly call it via “super(…)”.

9/19/2017 CUNY | Brooklyn College 15

… super(name, id, address); …

Override Methods in Super
Class: Methods
public class Person { ...

public String toString() {

return "Person (name=" + name + ", id=" + id + ", address=" + address + ")";

} …

}

9/19/2017 CUNY | Brooklyn College 16

public class Student extends Person { …

public String toString() {

return "Student (name=" + name + ", id=" + id + ", address=" + address

+ ", coursesTaken=[" + String.join(", ", classesTaken) + "])";

} …

}

Override Methods in Super
Class: Example

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Student adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

System.out.println (ben.toString());

System.out.println(adam.toString());

9/19/2017 CUNY | Brooklyn College 17

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
coursesTaken=[])

Questions

• Inheritance in Java

• Access control of class members

• Constructors

• Overriding methods

• A few other related items

• this, super

9/19/2017 CUNY | Brooklyn College 18

Polymorphism

• One type appears as and is used like another
type

• Example

• A Student object can be used in place of a
Person object.

• Inheritance is an approach to realize
polymorphism

9/19/2017 CUNY | Brooklyn College 19

Polymorphism: Example 1

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

System.out.println (ben.toString());

System.out.println(adam.toString());

9/19/2017 CUNY | Brooklyn College 20

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
coursesTaken=[])

Polymorphism: Example 2

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

display(ben); display(adam);

9/19/2017 CUNY | Brooklyn College 21

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
coursesTaken=[])

public static void display(Person person) {

System.out.println(person.toString());

}

How about Other Methods?

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Student adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

adam.haveTakenClass("CISC3120");

display(ben); display(adam);

9/19/2017 CUNY | Brooklyn College 22

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
coursesTaken=[CISC3120])

How about this example?

• You say, “adam” appears to be a “Student”
object.

9/19/2017 CUNY | Brooklyn College 23

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

adam.haveTakenClass("CISC3120");

display(ben); display(adam);

Error: The method haveTakenClass(String) is undefined for the type Person

Type Casting

• You can only invoke the method of declared
type, i.e., Person.

9/19/2017 CUNY | Brooklyn College 24

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

((Student)adam).haveTakenClass("CISC3120");

display(ben); display(adam);

Person (name=Ben Franklin, id=00124, address=2901 Bedford Ave)

Student (name=Adam Smith, id=00248, address=2902 Bedford Ave,
coursesTaken=[CISC3120])

Actual Type and Declared Type

• Declared type: type at compilation time

• Actual type: type at runtime

• A variable may refer to an object of different
type at runtime

• Example: actual and declared types of “ben”, and
“adam”?

9/19/2017 CUNY | Brooklyn College 25

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

((Student)adam).haveTakenClass("CISC3120");

Type Casting

• Down-casting

• Cast to a subtype

• It is allowed when there is a possibility that it
succeeds at run time (e.g., type to be casted to
matches actual type)

• In the example, a “Person” object references to a
“Student” object, and the down casting is allowed.

• Up-casting

• Cast to a super type

• It is always allowed

9/19/2017 CUNY | Brooklyn College 26

Questions

• Polymorphism via inheritance in Java

• Type casting in Java

9/19/2017 CUNY | Brooklyn College 27

Terms of Choice

• Super type

• Super class

• Base type

• Base class

• Parent class

• Child class

• …

9/19/2017 CUNY | Brooklyn College 28

Design Consideration

• Composition vs. Inheritance

9/19/2017 CUNY | Brooklyn College 29

More Example: Boat, RowBoat …

• Both examples (Person-Student-Professor
and Boat-RowBoat) are in the
“sampleprograms” repository on Github

9/19/2017 CUNY | Brooklyn College 30

Assignments

• To be available via CUNY Blackboard

9/19/2017 CUNY | Brooklyn College 31

