
CISC 3120

C07: Testing and JUnit
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/19/2017 1CUNY | Brooklyn College

Outline

• Recap and issues

• Grades and feedback

• Assignments & projects

• Review guide & CodeLabs

• Testing

• Junit

• Assignments

• Practices

9/19/2017 CUNY | Brooklyn College 2

Recap and Issues

• Any questions?

• Grades and feedback

• Assignments & projects

• Review guide & CodeLabs

9/19/2017 CUNY | Brooklyn College 3

Software Failures

• Ariane 5 rocket explosion (June 4, 1996)

• “Overflow from conversion from a 64-bit floating point number to a
16-bit signed integer value …”

• Therac-25 lethal radiation overdose (June 1985 ~ Jan 1987)

• “Some basic software engineering principles were apparently violated
…”

• Mars Climate Orbiter disintegration (December 11, 1998)

• “... In the case of the ground software, … was in English units of
pounds (force)-seconds (lbf-s) rather than the metric units specified
…”

• FBI Virtual Case File project abandonment (2000 ~ 2005)

• “ …a systematic failure of software engineering practices …”

9/19/2017 CUNY | Brooklyn College 4

Recent Stories in the Airlines
Industry
• “The big computer systems that get airplanes,

passengers and baggage to their destinations every
day are having a bad summer.” (NY Times, August 8,
2016)

• 1,000 0f 6,000 Delta flights canceled, August 8-9, 2016

• 2,300 canceled flights over 4 days at Southwest Airlines,
~July 22, 2016

• Hundreds of flights grounded at United Airlines, July
2015

• An iPad software glitch caused two days of problems for
American Airlines, the airline said Wednesday …

9/19/2017 CUNY | Brooklyn College 5

Software Quality Assurance

• Verification

• Did you build the thing right? (Did you meet the
specification?)

• Validation

• Did you build the right thing? (Is this what the
customer wants? That is, is the specification
correct?)

• Two approaches

• Testing

• Formal methods

9/19/2017 CUNY | Brooklyn College 6

Formal Methods for Software
Verification
• Start with a formal specification and prove code

behavior follows that of specification

• Mathematical proofs

• Humans do the proofs

• Computers do the proofs

• Automatic theorem proving

• Model checking

• In practice, mostly done for hardware; done in very limited
cases for software

• Computational intensive: hard to test, not too large spec., error
repair cost prohibitive, critical components or systems

9/19/2017 CUNY | Brooklyn College 7

9/19/2017 CUNY | Brooklyn College 8

“In 1981, Edmund M. Clarke and E. Allen Emerson, working in the USA, and
Joseph Sifakis working independently in France, authored seminal papers that
founded what has become the highly successful field of Model Checking. This
verification technology provides an algorithmic means of determining whether an
abstract model--representing, for example, a hardware or software design--
satisfies a formal specification expressed as a temporal logic formula. Moreover,
if the property does not hold, the method identifies a counterexample execution
that shows the source of the problem. The progression of Model Checking to the
point where it can be successfully used for complex systems has required the
development of sophisticated means of coping with what is known as the state
explosion problem. Great strides have been made on this problem over the past
27 years by what is now a very large international research community. As a
result many major hardware and software companies are now using Model
Checking in practice. Examples of its use include the verification of VLSI
circuits, communication protocols, software device drivers, real-time embedded
systems, and security algorithms.” -- by ACM, 2007

Testing for Software
Verification

• Everyone knows that debugging is twice
as hard as writing a program in the
first place. So if you're as clever as
you can be when you write it, how will
you ever debug it? -- Brian Kernighan

• Programming testing can be used to
show the presence of bugs, but never
to show their absence! – Edsger W.
Dijkstra

9/19/2017 CUNY | Brooklyn College 9

Testing

• Exhaustive testing is infeasible

• e.g., 1 nanosecond for test a program that has
one 64-bit input, how long does it take to test all
possible input values?

• Reduce the space

• Perform different tests at different phases of
software development

9/19/2017 CUNY | Brooklyn College 10

Different Types of Tests

• System testing (acceptance testing):
if the integrated program meets its
specification

• Integration testing: interfaces
between units have consistent
assumption and communicate correctly

• Module testing: tests across individual
units (e.g., across classes)

• Unit testing: single method does what
was expected (e.g., within a single
class)

9/19/2017 CUNY | Brooklyn College 11

Unit Testing

Module Testing

Integration Testing

System Testing
(Acceptance Testing)

Perspectives: Black-box vs.
White-box Tests

• Black-box tests

• Test design is solely based on the program’s
external specifications

• White-box (glass-box) tests

• Test design reflects knowledge about the
program’s implementation, e.g., developers’ doing
the tests

• For it or against it?

9/19/2017 CUNY | Brooklyn College 12

Test Coverage

• The fraction of the possible program
execution paths that have been tested

• 100% of test coverage is no guarantee of design
reliability

• Quality of tests also matters

9/19/2017 CUNY | Brooklyn College 13

Common Test Coverage Levels

• S0 (method coverage)

• Is every method executed at least once by the test suite?

• S1 (call coverage or entry/exit coverage)

• Has each method been called from every place it can be called?

• C0 (statement coverage)

• Is every statement of the source code executed at least once by the
test suite?

• C1 (branch coverage)

• Has each branch been taken in each direction at least once?

• C2 (path coverage)

• Has every possible route through the code been executed?

9/19/2017 CUNY | Brooklyn College 14

Sample Code to Test

1. public class MyClass {

2. public void foo(boolean x, boolean y, boolean z) {

3. if (x)

4. if (y && z) bar(0);

5. else

6. bar(1);

7. }

8. public boolean bar(x) {

9. return x;

10. }

11. }

9/19/2017 CUNY | Brooklyn College 15

Test Coverage S0

1. public class MyClass {

2. public void foo(boolean x,
boolean y, boolean z) {

3. if (x)

4. if (y && z) bar(0);

5. else

6. bar(1);

7. }

8. public boolean bar(x) {

9. return x;

10. }

11. }

Satisfying S0 requiring calling
foo and bar at least once each
in the tests

9/19/2017 CUNY | Brooklyn College 16

Test Coverage S1

1. public class MyClass {

2. public void foo(boolean x,
boolean y, boolean z) {

3. if (x)

4. if (y && z) bar(0);

5. else

6. bar(1);

7. }

8. public boolean bar(x) {

9. return x;

10. }

11. }

Satisfying S1 requiring calling
bar from both line 4 and line 6
in the test suites

9/19/2017 CUNY | Brooklyn College 17

Test Coverage C0

1. public class MyClass {

2. public void foo(boolean x,
boolean y, boolean z) {

3. if (x)

4. if (y && z) bar(0);

5. else

6. bar(1);

7. }

8. public boolean bar(x) {

9. return x;

10. }

11. }

Counting both branches of a
conditional as a single
statement, satisfying C0
requiring calling foo at least
once with x true, and at least
once with y false

9/19/2017 CUNY | Brooklyn College 18

Test Coverage C1

1. public class MyClass {

2. public void foo(boolean x,
boolean y, boolean z) {

3. if (x)

4. if (y && z) bar(0);

5. else

6. bar(1);

7. }

8. public boolean bar(x) {

9. return x;

10. }

11. }

Satisfying C1 requiring calling
foo at least once with x true,
and with x false, and with y &&
z true and false.

9/19/2017 CUNY | Brooklyn College 19

Test Coverage C2

1. public class MyClass {

2. public void foo(boolean x,
boolean y, boolean z) {

3. if (x)

4. if (y && z) bar(0);

5. else

6. bar(1);

7. }

8. public boolean bar(x) {

9. return x;

10. }

11. }

Satisfying C2 requiring calling
foo with all 8 combinations of
values of x, y, and z

9/19/2017 CUNY | Brooklyn College 20

Modified Condition/Decision
Coverage (MCDC)

• Combines a subset of the above levels

• Each point of entry and exit in the program have
been invoked at least once

• Every decision in the code has taken all possible
outcomes at least once

• Each condition in a decision has been shown to
independently affect that decision’s outcome

9/19/2017 CUNY | Brooklyn College 21

Achieving Test Coverage

• 100% of C0 coverage is not unreasonable.

• Achieving C1 coverage requires careful
construction of tests.

• C2 is the most difficult of all, and the
additional value of 100% of C2 is debatable.

9/19/2017 CUNY | Brooklyn College 22

Questions?

• Examples of catastrophic software failures

• Software quality assurance

• A few important concepts on software
testing

9/19/2017 CUNY | Brooklyn College 23

Team Discussion & Exercise

• Design tests for a method

9/19/2017 CUNY | Brooklyn College 24

Unit and Functional Testing

• Recall …

• Unit testing: single method does what was expected (e.g.,
within a single class)

• Functional testing: a well-defined subset of the code does
what was expected (e.g., several methods and classes)

• Tests

• Calls to methods with different input parameters

• Asserts on the effects of method calls

• Aims for high coverage

• Almost always white-box, and performed by developers

9/19/2017 CUNY | Brooklyn College 25

Test Assertion

• An expression encapsulates some testable
logic about a target under test

9/19/2017 CUNY | Brooklyn College 26

JUnit

• A unit testing framework for Java

• Test assertion in JUnit

• It throws an exception if it evaluates to false

9/19/2017 CUNY | Brooklyn College 27

Unit Test Example with JUnit

• Some of you completed the Array and ArrayList
assignment

• Let’s use it as an example

• Test whether the “delete” method functions as
specified.

public class FruitArray

{ ...

public void delete(String fruitName) { … }

…

}

9/19/2017 CUNY | Brooklyn College 28

What is the Specification?

public class FruitArray

{ ...

public void delete(String fruitName) { … }

…

}

9/19/2017 CUNY | Brooklyn College 29

What is the Specification?

• Remove an element, “shrink” the “list”, as if
the element had never been in the “list”.

public class FruitArray

{ ...

public void delete(String fruitName) { … }

…

}

9/19/2017 CUNY | Brooklyn College 30

What is the Test Assertion?

• It is expected that upon an item is deleted,
the object should be identical to another
object of the class that does not have the
item from beginning with, but has all the
other items.

9/19/2017 CUNY | Brooklyn College 31

Example Design

• Add methods to aid testing

• Some methods may be added
just for testing purpose.

9/19/2017 CUNY | Brooklyn College 32

“Testable
code tends to
be good code,

and vice
versa.”

“But, you don’t
want to break the
good design just
for unit tests!”

Example Implementation in
JUnit 4
• Use JUnit 4, assume Maven project in Eclipse

• A few steps

• Update pom.xml

<!-- https://mvnrepository.com/artifact/junit/junit -->

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.12</version>

<scope>test</scope>

</dependency>

• Remove AppTest.Java

• Create your own test class (See https://github.com/junit-team/junit4/wiki/getting-started)

• Complete the example in “ArrayArrayList” in the “sampleprograms” repository

9/19/2017 CUNY | Brooklyn College 33

https://github.com/junit-team/junit4/wiki/getting-started

FruitArrayTest.java

import static org.junit.Assert.assertEquals;

import static org.junit.Assert.assertArrayEquals;

import org.junit.Test;

public class FruitArrayTest

{

@Test // Important: annotate a test

public void testDelete()

{

testDeleteByDeleting1st();

testDeleteByDeleting3rd();

testDeleteByDeletingLast();

testDeleteIgnoreCaseByDeleting1st();

testDeleteIgnoreCaseByDeletingLast();

}

private void testDeleteByDeleting1st() {

String[] fruits = {new String("Apple"),

new String("Banana"),

new String("Kiwi"),

new String("Mango"),

new String("Orange")};

FruitArray fruitArray = new FruitArray(fruits);

fruitArray.delete(new String("Apple"));

assertEquals(fruitArray.getSize(), fruits.length - 1);

assertEquals(fruitArray.getCapacity(), fruits.length);

assertArrayEquals(fruits, fruitArray.getFruitsAsArray());

}

…

9/19/2017 CUNY | Brooklyn College 34

Note: the purpose of the test is to show how you
write tests in a JUnit. This test is actually
poorly designed. See the sample code in the repo
for better ones.

Did We Pass the Tests?

9/19/2017 CUNY | Brooklyn College 35

Questions

• JUnit

• Examples in JUnit 4

• Update pom.xml

• Use the sample code as the template or the one
in the JUnit 4 wiki page

9/19/2017 CUNY | Brooklyn College 36

Assignments

• How are we doing?

• Projects

• Assignments

• Review questions and CodeLab

9/19/2017 CUNY | Brooklyn College 37

