
CISC 3115

Organizing Classes and

Controlling Access
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

1/31/2024 1CUNY | Brooklyn College

Outline

• Concept of Java packages

• Visibility modifiers

• public, private, and no modifiers

• Data encapsulation

1/31/2024 CUNY | Brooklyn College 2

Programs grow bigger

• An application can consist of many programs, each

has many classes

• Is there a problem?

• There is a need to organize the classes and control the

access to the classes and their attributes

• Mechanism

• Packages

• Visibility modifiers

1/31/2024 CUNY | Brooklyn College 3

Java Packages

• Problem. Programmers need to organize Java classes

• Imagine that your program consists of more than 1,000 classes …

• Solution. Bundle classes into packages

• Any benefits?

• To make classes easier to find and use

• Recall that you have created 1,000 classes …

• To avoid naming conflicts

• You may want to have two “Student” classes, each with different purposes,
thus different methods

• To control access to the classes (control where we can use the classes in
our programs)

1/31/2024 CUNY | Brooklyn College 4

Creating Package

• Use the “package” statement as the first non-comment
and non-blank statement in the program

• Syntax

package packagename

• Examples

• package project1

• package cisc3115.project1

• package edu.cuny.brooklyn.cis.cisc3115.project1

1/31/2024 CUNY | Brooklyn College 5

Package Naming Convention

• Best Practice

• Package names should be written in all lower case to

avoid conflicting with the names of classes and other

data types that you define.

1/31/2024 CUNY | Brooklyn College 6

Every Java class belongs in a package

1/31/2024 CUNY | Brooklyn College 7

Unnamed Package

• If you do not use a package statement, your class is

in an unnamed package.

• Best practice

• Generally speaking, an unnamed package is only for

small or temporary applications or when you are just

beginning the development process.

1/31/2024 CUNY | Brooklyn College 8

Package: Example

Unnamed package

(the default package)

class Circle {

double radius;

}

Named package

package cisc3115

class Circle {

double radius;

}

1/31/2024 CUNY | Brooklyn College 9

Package layout corresponds to

directory layout

• Where (what directory) should we save the

Circle.java file?

package cisc3115.shape

class Circle {

double radius;

}

1/31/2024 CUNY | Brooklyn College 10

Using Package Members

• To use a class in a package, we have three methods

that are equal to the Java compiler

1. Refer to the member by its fully qualified name

2. Import the package member

3. Import the member's entire package

1/31/2024 CUNY | Brooklyn College 11

Fully Qualified Name

• Fully qualified name

• Syntax

packagename.typename

• Example

• Circle.java

• TestCircle.java

package cisc3115

class Circle {

double radius;

}

1/31/2024 CUNY | Brooklyn College 12

class TestCircle {
 public static void main(String[] args) {
 cisc3115.Circle c1 = new Circle();
 // …
 }
}

Import Package Member

• To import a specific member into the current file, Use an import
statement at the beginning of the file before any type (e.g., class)
definitions but after the package statement, if there is one.

• Syntax

import packagename.PackageMember

• Example

package cisc3115.shape

class Circle {

double radius;

}

class Square {

double length;

}

1/31/2024 CUNY | Brooklyn College 13

import cisc3115.shape.Circle;
import cisc3115.shape.Square;
class TestShapes {
 public static void main(String[] args) {
 Circle c1 = new Circle();
 Square s1 = new Square();
 }
}

Import Entire Package

• To import a specific member into the current file, Use an import
statement at the beginning of the file before any type (e.g., class)
definitions but after the package statement, if there is one.

• Don’t use this method

• Syntax

import packagename.*

• Example

package cisc3115.shape

class Circle {

double radius;

}

class Square {

double length;

}

1/31/2024 CUNY | Brooklyn College 14

import cisc3115.shapes.*;

class TestShape {
 public static void main(String[] args) {
 Circle c1 = new Circle();
 Square s1 = new Square();
 }
}

Apparent Hierarchies of Packages

• Packages appear to be hierarchical from the naming

perspective, but they are not from “importing”

perspective

1/31/2024 CUNY | Brooklyn College 15

package cisc3115.shape

class Circle {

 double radius;

}

package cisc3115

class Student {

 String name;

}
• Example

• cisc3115 and
cisc3115.shape are two
packages when you
import them.

Apparent Hierarchies of Packages:

Exercise

1/31/2024 CUNY | Brooklyn College 16

package cisc3115.shape

class Circle {

 double radius;

}

package cisc3115

class Student {

 String name;

}

• cisc3115 and cisc3115.shape are two packages

when you import them.

• Question: right or
wrong?

import cisc3115.*;

class TestShapes {
 public static void main(String[] args) {
 Circle c1 = new Circle();
 }
}

Apparent Hierarchies of Packages:

Exercise: Answer

1/31/2024 CUNY | Brooklyn College 17

package cisc3115.shape

class Circle {

 double radius;

}

package cisc3115

class Student {

 String name;

}

• cisc3115 and cisc3115.shape are two packages

when you import them.

• Question: right or
wrong?

import cisc3115.*;

class TestShapes {
 public static void main(String[] args) {
 Circle c1 = new Circle();
 }
}

Apparent Hierarchies of Packages:

Example

1/31/2024 CUNY | Brooklyn College 18

package cisc3115.shape

class Circle {

 double radius;

}

package cisc3115

class Student {

 String name;

}

• cisc3115 and cisc3115.shape are two packages

when you import them.

import cisc3115.*;
import cisc3115.shape.*;

class TestShapes {
 public static void main(String[] args) {
 Circle c1 = new Circle();
 Student s1 = new Student();
 }
}

Apparent Hierarchies of Packages:

Example

1/31/2024 CUNY | Brooklyn College 19

package cisc3115.shape

class Circle {

 double radius;

}

package cisc3115

class Student {

 String name;

}

• cisc3115 and cisc3115.shape are two packages

when you import them.

• But do not use the method importing entire package

import cisc3115.*;
import cisc3115.shape.*;

class TestShapes {
 public static void main(String[] args) {
 Circle c1 = new Circle();
 Student s1 = new Student();
 }
}

Questions?

• Concept of package

• How to name a package?

• How to import a package?

• Why do we talk about this?

• To make types (e.g., classes) easier to find and use

• What if you created 1,000 classes?

• To avoid naming conflicts

• You may want to have two “Student” classes

• To control access

1/31/2024 CUNY | Brooklyn College 20

Visibility Modifier

• No modifier: By default, the class, data field, or

method can be accessed by any class in the same

package.

• If you don’t explicitly declare which package your class belongs to,

the class is in the default package, an unnamed package

• You may change this using three modifiers, public, private, and

protected (“protected” to be discussed in the future) to the class,

data field, or method

1/31/2024 CUNY | Brooklyn College 21

Public and Private Visibility Modifiers

• public

• The class, data field, or method is visible to any class in

any package.

• private

• The data field or methods can be accessed only by the

declaring class.

1/31/2024 CUNY | Brooklyn College 22

Visibility Modifier: Example 1

• Public and private modifiers

1/31/2024 CUNY | Brooklyn College 23

Visibility Modifier: Example 2

• No modifiers

1/31/2024 CUNY | Brooklyn College 24

Visibility Modifier: Example 3

• Private

1/31/2024 CUNY | Brooklyn College 25

Visibility Modifiers: How to Choose?

• Consider most/more restrictive visibility modifier

first, unless you have a good reason not to

• Generally, make data fields private

• which make code easy to maintain (why?)

1/31/2024 CUNY | Brooklyn College 26

Data Field Encapsulation

• Making data fields private protects data and makes

the class easy to maintain

• Why?

• Data may be tampered with. Contrasting the following:

• circle.radius = 3 vs. circle.setRadius(3)

1/31/2024 CUNY | Brooklyn College 27

Data Field Encapsulation

• Making data fields private protects data and makes the class
easy to maintain

• Why?

• Data may be tampered with. Contrasting the following:

• circle.radius = 3 vs. circle.setRadius(3)

• Using the former, the class becomes difficult to maintain and
vulnerable to bugs, and also implementation depends on the data
structure/types

• Using the later, the class designers controls how the object/class
state is being changed, and we can also divorce implementation
from actual data structures/types used.

1/31/2024 CUNY | Brooklyn College 28

Data Field Encapsulation: Example

1/31/2024 CUNY | Brooklyn College 29

 Circle

-radius: double

-numberOfObjects: int

+Circle()

+Circle(radius: double)

+getRadius(): double

+setRadius(radius: double): void

+getNumberOfObjects(): int

+getArea(): double

The radius of this circle (default: 1.0).

The number of circle objects created.

Constructs a default circle object.

Constructs a circle object with the specified radius.

Returns the radius of this circle.

Sets a new radius for this circle.

Returns the number of circle objects created.

Returns the area of this circle.

The - sign indicates

private modifier

Questions

• Visibility modifiers

• No visibility modifiers

• Public and private visibility modifiers

• Data field encapsulation

1/31/2024 CUNY | Brooklyn College 30

Exercise
• Study Java API class Date (java.util.Date) and several related classes

• Take two classes, TV and TestTV as illustrated in Listings 9.3 and 9.4 in
the textbook

• Add a private data field to the TV class and the data field is to count the number
of objects of the TV class that has been created.

• Hint: should it be a static or an instance variable?

• Add a data field to the TV class, called manufacturingDate that references a
Date object represent the manufacturing date and time of a TV object.

• Hint: should it be a static or an instance variable?

• Following the principle of data encapsulation, make data fields private, and
make methods public

• Test the revised program

1/31/2024 CUNY | Brooklyn College 31

	Slide 1: CISC 3115 Organizing Classes and Controlling Access
	Slide 2: Outline
	Slide 3: Programs grow bigger
	Slide 4: Java Packages
	Slide 5: Creating Package
	Slide 6: Package Naming Convention
	Slide 7: Every Java class belongs in a package
	Slide 8: Unnamed Package
	Slide 9: Package: Example
	Slide 10: Package layout corresponds to directory layout
	Slide 11: Using Package Members
	Slide 12: Fully Qualified Name
	Slide 13: Import Package Member
	Slide 14: Import Entire Package
	Slide 15: Apparent Hierarchies of Packages
	Slide 16: Apparent Hierarchies of Packages: Exercise
	Slide 17: Apparent Hierarchies of Packages: Exercise: Answer
	Slide 18: Apparent Hierarchies of Packages: Example
	Slide 19: Apparent Hierarchies of Packages: Example
	Slide 20: Questions?
	Slide 21: Visibility Modifier
	Slide 22: Public and Private Visibility Modifiers
	Slide 23: Visibility Modifier: Example 1
	Slide 24: Visibility Modifier: Example 2
	Slide 25: Visibility Modifier: Example 3
	Slide 26: Visibility Modifiers: How to Choose?
	Slide 27: Data Field Encapsulation
	Slide 28: Data Field Encapsulation
	Slide 29: Data Field Encapsulation: Example
	Slide 30: Questions
	Slide 31: Exercise

