CISC 3115
“this” Object and Immutable

Class/Obiject

Hui Chen
Department of Computer & Information Science

CUNY Brooklyn College



Outline

* The this reference variable

* Immutable class and object



The this Keyword

* The this keyword is the name of a reference that
refers to an object itself.

e Common use
* To reference a class’s hidden data fields.

 To enable a constructor to invoke another constructor of
the same class.



Using this

public class F { Suppose that fl and f2 are two objects
private int 1 = 5; F fl = new F(); F £2 = new F();
private static double k = 0;

Invoking fl.setI(10) is to execute

void setI (int i) { this.i = 10, where this refers fl
this.i = i,

} Invoking f2.setI(45) is to execute

this.i = 45, where this refers f2
static void setK(double k) {

F.k = k;
}




Calling Overloaded Constructor

public class Circle {
private double radius;

public Circle (double radius) {
th;gfradius = radius;

} —. this must be explicitly used to reference the data
field radius of the object being constructed

public Circle () {
this (1.0) ;

J — this is used to invoke another constructor

public double getArea () {
return this.radius * tﬁts.radius * Math.PI;

}

J Every instance variable belongs to an instance represented by this,

which is normally omitted
1/31/2024 CUNY | Brooklyn College 5



Questions?

e What is the “this” reference variable

* What are the two common usage?



Immutable Objects and Classes

* The content of an object cannot be changed once
the object is created



Immutable Objects and Classes:
Example

* The content of objects of the following Circle class cannot be changed
* Why?
public class Circle {
private radius = 1.0;
public Circle() {
}
private double getArea() {

return radius * radius * Math.PI;

}



Mutators

* Mutators: methods that changes the value of data
fields

* A class with all private data fields and without
mutators is not necessarily immutable.

e A data field can be a reference variable whose content
can be changed with the reference



No Mutator, but Immutable: Example

import java.util.Date; public String getName() {
public class Student { return name;
private int id; }
private String name; public Date getDateCreated() {
private Date dateCreated; return dateCreated;
public Student(int ssn, STring newName) { }
id = ssn; }

name = newName;

dateCreated = new Date(); public static void main(String[] args) {

}
public int getld() {

Student s = new Student(123, “John”);
Date d = s.getDateCreated();

d.setTime(200000);
}

return id;

}



No Mutator, but Immutable: Avoid
this Pitfall

e If it is justifiable, we should avoid this pitfall

* One method: do not return the reference to the state
variable

* To realize this, we can leverage

* Use copy constructor

* Return a copy of the referenced object



Example

// copy constructor
public Student(Student s) {
id = s.id;
name = s.name;
dateCreated = new Date(s.dateCreated);
}
// Return a copy of the referenced object
public Date getDateCreated() {

return new Date(dateCreated);

}



What Class is Immutable?

* These conditions must hold
* mark all data fields private
e provide no mutator methods

* no accessor methods that would return a reference to a
mutable data field object.



Questions?

* Concept of immutable classes and objects
* Concept of mutators

* Condition under which a class or a object is
immutable



	Slide 1: CISC 3115 “this” Object and Immutable Class/Object
	Slide 2: Outline
	Slide 3: The this Keyword
	Slide 4: Using this
	Slide 5: Calling Overloaded Constructor
	Slide 6: Questions?
	Slide 7: Immutable Objects and Classes
	Slide 8: Immutable Objects and Classes: Example
	Slide 9: Mutators
	Slide 10: No Mutator, but Immutable: Example
	Slide 11: No Mutator, but Immutable: Avoid this Pitfall
	Slide 12: Example
	Slide 13: What Class is Immutable?
	Slide 14: Questions?

