
CISC 3115

Exception and Text File I/O
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/27/2024 1CUNY | Brooklyn College

Outline

• Discussed

• Approaches to handle errors (what-if and exceptions)

• Concept of Exception

• The Java throwable class hierarchy

• system errors, runtime exceptions, checked errors, unchecked errors

• Methods of declaring, throwing, catching exception, and rethrowing exceptions

• Exception, call stack, stack frame, and stack trace

• Some best practice

• Exception and simple text/character File I/O

• (discussed) File system path (to identify file)

• Concept of text file (Java API classes and text file)

• Reliable processing text file (patterns and exceptions)

3/27/2024 CUNY | Brooklyn College 2

Text File

• There is a need to represent text data, i.e., human

understandable

• Text file are also called character file

• Store text data

• written text or binary representations of characters

• Characters?

• Binary representations?

3/27/2024 CUNY | Brooklyn College 3

Characters

• Basic units to form written text

• Each language has a set of characters

• The 1st letter in the English Alphabet is a character

• On computers, represent characters in bit patterns using character

encoding scheme

• A character is a code (a binary number, binary representation)

• A character can have many different glyphs (graphical representation)

• Character “a”: a, a, a, a, …

3/27/2024 CUNY | Brooklyn College 4

Binary
Representation

(character code)

Graphical
representation

(glyph)

Table
Lookups

Unicode

• A single coding scheme for written texts of the world’s languages
and symbols

• Each character has a code point (21 bits)

• originally 16-bit integer (0x0000 – 0xffff)

• extended to the range of (0x0 – 0x10ffff), e.g., U+0000, U+0001,
…, U+2F003, …, U+FF003, …, U+10FFFF

• All the codes form the Unicode code space

• Divided into planes, each plane is divided into blocks

• Basic Multilingual Plane (BMP), the 1st plane, where a language
occupies one or mote blocks

3/27/2024 CUNY | Brooklyn College 5

Unicode Code Point Examples

• A code point is 21 bits.

• All codes in these examples are hexadecimal.

3/27/2024 CUNY | Brooklyn College 6

Representative
glyph

A 東

Unicode code
point

U+0041 U+00DF U+6771 U+10400

Unicode Encoding

• Encoding schemes - actual text is processed as binary
data via one of several Unicode encodings

• e.g., UTF-8, UTF-16, UTF-32

• Express a code point in bytes

• in UTF-8, use 1 to 4 bytes (grouped into code units)
to represent a code point (space saving, backward
comparability with ASCII)

• Character → Unicode code point → Unicode
encoding code unit

3/27/2024 CUNY | Brooklyn College 7

Encoding Scheme: Code Point and

Code Units: Examples
• Character → Unicode code point → Unicode encoding code unit

• For coding scheme like UTF-16, there are variants

• write the most significant byte first vs. write the most significant byte last

3/27/2024 CUNY | Brooklyn College 8

Representative
glyph

A 東

Unicode code
point

U+0041 U+00DF U+6771 U+10400

UTF-32 code units 00000041 000000DF 00006771 00010400

UTF-16 code units 0041 00DF 6771 D801 DC00

UTF-8 code units 41 C3 9F E6 9D B1 F0 90 90 80

UTF-8

• A variable-length character encoding standard that use 1 to 4 bytes to represent

a Unicode character.

• The following table defines the conversion between Unicode code point and

variable UTF-8 character bytes

3/27/2024 CUNY | Brooklyn College 9

UTF-8: Examples

3/27/2024 CUNY | Brooklyn College 10

Characters in the Java Platform

• Original design in Java

• A character is a 16-bit Unicode

• A Unicode 1.0 code point is a 16-bit integer

• Java predates Unicode 2.0 where a code point was extended to the range (0x0 – 0x10ffff).

• Example: U+0012: ‘\u0012’

• Evolved design: A Unicode codepoint is now 21 bits.

• Java uses a UTF-16 code unit to represent a character

• The value of a character whose code point is no above U+FFFF is its code point,
a 2-byte integer

• The value of a character whose code point is above U+FFFF are 2 code units or 2
2-byte integers ((high surrogate: U+D800 ~ U+DBFF and low surrogate: U+DC00
to U+DFFF)

3/27/2024 CUNY | Brooklyn College 11

Encoding Schemes in Java

• Java supports a few standard encoding schemes for

subsets of Unicode characters

3/27/2024 CUNY | Brooklyn College 12

Charset Description

US-ASCII Seven-bit ASCII, a.k.a. ISO646-US, a.k.a. the Basic Latin block of the
Unicode character set

ISO-8859-1 ISO Latin Alphabet No. 1, a.k.a. ISO-LATIN-1

UTF-8 Eight-bit UCS Transformation Format

UTF-16BE Sixteen-bit UCS Transformation Format, big-endian byte order

UTF-16LE Sixteen-bit UCS Transformation Format, little-endian byte order

UTF-16 Sixteen-bit UCS Transformation Format, byte order identified by an
optional byte-order mark (BOM)

Charset Classes

• Use string (e.g., "UTF-8") or Charset instances to represent an
encoding scheme (subsets of Unicode characters)

• java.nio.Charset

• Defines methods for creating decoders and encoders. Loosely speaking:

• Encode: Unicode code point → code unit in the encoding scheme

• Decode: code unit → Unicode code point

• For retrieving the various names associated with a charset.

• Instances of this class are immutable.

• java.nio.StandardCharsets

• Define constant for the standard Charsets.

3/27/2024 CUNY | Brooklyn College 13

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/nio/charset/Charset.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/nio/charset/StandardCharsets.html

JVM Define Settings

• Windows • Linux

3/27/2024 CUNY | Brooklyn College 14

• Be explicit about the encoding settings. Relying on

JVM’s default encoding settings is not recommended.

C:\> java -XshowSettings 2>&1 |

find "file.encoding"

 file.encoding = Cp1252

C:\> jshell

jshell>

System.getProperty("file.encoding")

$1 ==> "Cp1252"

$ java -XshowSettings 2>&1 | grep

"file.encoding"

 file.encoding = UTF-8

$ jshell

jshell>

System.getProperty("file.encoding")

$1 ==> "UTF-8"

Questions?

• Text data, text file?

• Characters and strings

• Unicode

• Codepoint

• Unicode encoding scheme

• Code units

• Java?

3/27/2024 CUNY | Brooklyn College 15

Text I/O

• Text files or character files contains text data

• Objective

• To mast the patterns to read/write strings and numeric

values from/to a text file using the Scanner and

PrintWriter classes.

• These classes provide a few convenient methods.

• To process text files in a reliable fashion

• using exceptions

3/27/2024 CUNY | Brooklyn College 16

PrintWriter

3/27/2024 CUNY | Brooklyn College 17

+PrintWriter(filename: String)

+PrintWriter(filename: String, csn:String)

+print(s: String): void

+print(c: char): void

+print(cArray: char[]): void

+print(i: int): void

+print(l: long): void

+print(f: float): void

+print(d: double): void

+print(b: boolean): void

Also contains the overloaded println methods.

Also contains the overloaded printf methods.

.

Creates a PrintWriter for the specified file.

Creates a PrintWriter for the specified file and charset

Writes a string.

Writes a character.

Writes an array of character.

Writes an int value.

Writes a long value.

Writes a float value.

Writes a double value.

Writes a boolean value.

A println method acts like a print method; additionally it prints a line

separator. The line separator string is defined by the system. It is \r\n

on Windows and \n on Unix.

The printf method was introduced in §4.6, “Formatting Console Output

and Strings.”

PrintWriter::close()

• Any system resources associated with a PrintWriter

should be released

• Use the PrintWriter::close() method

• Why it is important to do “close()” and do it

properly?

3/27/2024 CUNY | Brooklyn College 18

Write Text to File: First Try

• Observe WriteText.java

• Is there any problem?

PrintWriter output = new PrintWriter(file, "UTF-8");

// Write formatted output to the file

output.print("John T Smith "); output.println(90);

output.print("Eric K Jones "); output.println(85);

// doing something more …

// Close the file

output.close();

3/27/2024 CUNY | Brooklyn College 19

Write Text to File: First Try: Resources

Always Released?
• Observe WriteText.java

• Is there any problem?

PrintWriter output = new PrintWriter(file, "UTF-8");

// Write formatted output to the file

output.print("John T Smith "); output.println(90);

output.print("Eric K Jones "); output.println(85);

// doing something more …

// Close the file

output.close();

3/27/2024 CUNY | Brooklyn College 20

Exception
may occur,
resulting in
the close()
method not
be called.

Write Text to File: Second Try: close()

in the finally Block
• Observe the improved WriteText.java

PrintWriter output = null;

try {

 output = new PrintWriter(file, "UTF-8");

 // Write formatted output to the file

 output.print("John T Smith "); output.println(90);

 output.print("Eric K Jones "); output.println(85);

} finally {

 // Close the file

 output.close();

}

3/27/2024 CUNY | Brooklyn College 21

Autoclose using try-with-resources

• JDK 7 provides the followings try-with- resources

syntax that automatically closes the files.

try (declare and create resources) {

 Use the resource to process the file;

}

3/27/2024 CUNY | Brooklyn College 22

Write Text to File: Third Try: try-with-

resources
try (PrintWriter output = new PrintWriter(file, "UTF-8")) {

 // Write formatted output to the file

output.print("John T Smith ");

output.println(90);

 output.print("Eric K Jones ");

 output.println(85);

}

3/27/2024 CUNY | Brooklyn College 23

Questions?

• Writing text using File and PrintWriter

• What are the approaches to release system resources

used by PrintWriter?

• Two patterns

• The finally block

• Try-with-resources

3/27/2024 CUNY | Brooklyn College 24

Reading Text Using Scanner

3/27/2024 CUNY | Brooklyn College 25

java.util.Scanner

+Scanner(source: File)

+Scanner(source: String)

+Scanner(File source, String csn)

+close()

+hasNext(): boolean

+next(): String

+nextByte(): byte

+nextShort(): short

+nextInt(): int

+nextLong(): long

+nextFloat(): float

+nextDouble(): double

+useDelimiter(pattern: String):
Scanner

Creates a Scanner object to read data from the specified file.

Creates a Scanner object to read data from the specified string.

Creates a Scanner object to read data from the specified file.

Closes this scanner.

Returns true if this scanner has another token in its input.

Returns next token as a string.

Returns next token as a byte.

Returns next token as a short.

Returns next token as an int.

Returns next token as a long.

Returns next token as a float.

Returns next token as a double.

Sets this scanner’s delimiting pattern.

Example Problem and Program:

Replacing Text
• Problem:

• Write a class named ReplaceText that replaces a string in a text file
with a new string.

• The filename and strings are passed as command-line arguments as
follows:

java ReplaceText sourceFile targetFile oldString newString

• For example, invoking

java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

• replaces all the occurrences of StringBuilder by StringBuffer
in FormatString.java and saves the new file in t.txt.

3/27/2024 CUNY | Brooklyn College 26

Example Program: the Gist of

Replacing Text
try (// try-with-resource to autoclose resources

 Scanner input = new Scanner(sourceFile, "UTF-8");

 PrintWriter output = new PrintWriter(targetFile, "UTF-8");) {

 while (input.hasNext()) {

 String s1 = input.nextLine();

 String s2 = s1.replaceAll(args[2], args[3]);

 output.println(s2);

 }

}

• Change it to use the try-finally pattern?

3/27/2024 CUNY | Brooklyn College 27

Questions?

• Use Scanner to read text file

3/27/2024 CUNY | Brooklyn College 28

Exercises 1

• In the ReplaceText example program, we use a try-with-

resource to release system resources associated with

the Scanner and PrintWriter objects.

• Revise the class to release resources in the finally block

• In ReplaceText, we declare the main(String[] args) method to

throw Exception. Revise the program so that exceptions are

handled in the main method by using the catch clause.

• Make sure that you catch as the most specific exception as

you can.

3/27/2024 CUNY | Brooklyn College 29

Exercise 2
This is question 12.11 in chapter 12 of the textbook. Write a
program that removes all the occurrences of a specified string from
a text file. For example, invoking

 Java ReplaceText john filename.txt

removes the string john from the filename.txt file. The rest is similar
to exercise 1.

• Use the ReplaceText example program as a start

• In ReplaceText, we declare the main(String[] args) method to
throw Exception. Revise the program so that exceptions are
handled in the main method by using the catch clause.

• Make sure that you catch as the most specific exception as you
can.

3/27/2024 CUNY | Brooklyn College 30

	Slide 1: CISC 3115 Exception and Text File I/O
	Slide 2: Outline
	Slide 3: Text File
	Slide 4: Characters
	Slide 5: Unicode
	Slide 6: Unicode Code Point Examples
	Slide 7: Unicode Encoding
	Slide 8: Encoding Scheme: Code Point and Code Units: Examples
	Slide 9: UTF-8
	Slide 10: UTF-8: Examples
	Slide 11: Characters in the Java Platform
	Slide 12: Encoding Schemes in Java
	Slide 13: Charset Classes
	Slide 14: JVM Define Settings
	Slide 15: Questions?
	Slide 16: Text I/O
	Slide 17: PrintWriter
	Slide 18: PrintWriter::close()
	Slide 19: Write Text to File: First Try
	Slide 20: Write Text to File: First Try: Resources Always Released?
	Slide 21: Write Text to File: Second Try: close() in the finally Block
	Slide 22: Autoclose using try-with-resources
	Slide 23: Write Text to File: Third Try: try-with-resources
	Slide 24: Questions?
	Slide 25: Reading Text Using Scanner
	Slide 26: Example Problem and Program: Replacing Text
	Slide 27: Example Program: the Gist of Replacing Text
	Slide 28: Questions?
	Slide 29: Exercises 1
	Slide 30: Exercise 2

