CISC 3115
Java API Classes: File and Path

Hui Chen
Department of Computer & Information Science

CUNY Brooklyn College



Outline

* Discussed
* Approaches to handle errors (what-if and exceptions)
* Concept of Exception
e The Java throwable class hierarchy
* system errors, runtime exceptions, checked errors, unchecked errors
* Methods of declaring, throwing, catching exception, and rethrowing exceptions
* Exception, call stack, stack frame, and stack trace

* Some best practice
* Exception and simple text/character File I/O
* (discussed) File system path (to identify file)
« Concept of text file (Java API classes and text file)

* Reliable processing text file (patterns and exceptions)



ldentifying a file using Java API

e The File class (in the java.io package)

* The Path interface, Paths helper class, and Files
helper class (in the java.nio.file package)

e What is an “interface”? Treat it as a “class” for now.


https://docs.oracle.com/javase/8/docs/api/java/io/File.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Paths.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html

The File Class

* java.io.File

* |t provides an abstraction that deals with most of the
machine-dependent complexities of files and path
names in a machine-independent fashion.

* It is a wrapper class for the file name and its file system
path.

* The filename and its file system path are strings.



The File Class: API

3/27/2024

java.io.File

+File(pathname: String)

+File(parent: String, child: String)

+File(parent: File, child: String)

+exists(): boolean
+canRead(): boolean
+canWrite(): boolean
+isDirectory(): boolean
+isFile(): boolean
+isAbsolute(): boolean
+isHidden(): boolean

+getAbsolutePath(): String

+getCanonicalPath(): String

+getName(): String

+getPath(): String
+getParent(): String
+lastModified(Q: long
+length(): long

+1istFile(): File[]
+delete(): boolean

+renameTo(dest: File):
+mkdir(): boolean

+mkdirs(): boolean

boolean

Creates a Fi1e object for the specified path name. The path name may be a
directory or a file.

Creates a File object for the child under the directory parent. The child may be
a file name or a subdirectory.

Creates a Fi le object for the child under the directory parent. The parent is a
File object. In the preceding constructor, the parent is a string.

Returns true if the file or the directory represented by the FiTe object exists.
Returns true if the file represented by the File object exists and can be read.
Returns true if the file represented by the File object exists and can be written.
Returns true if the FiTe object represents a directory.

Returns true if the FiTe object represents a file.

Returns true if the FiTe object is created using an absolute path name.

Returns true if the file represented in the FiTe object is hidden. The exact
definition of hidden is system-dependent. On Windows, you can mark a file
hidden in the File Properties dialog box. On Unix systems, a file is hidden if
its name begins with a period(.) character.

Returns the complete absolute file or directory name represented by the File
object.

Returns the same as getAbsolutePath() except that it removes redundant

names, such as "." and "..", from the path name, resolves symbolic links (on
Unix), and converts drive letters to standard uppercase (on Windows).

Returns the last name of the complete directory and file name represented by
the File object. For example, new File("c:\\book\\test.dat").getName() returns
test.dat.

Returns the complete directory and file name represented by the Fi le object.
For example,new File("c:\\book\\test.dat").getPath() returns c:\book\test.dat.

Returns the complete parent directory of the current directory or the file
represented by the FiTe object. For example, new
File("c:\\book\\test.dat").getParent() returns c:\book.

Returns the time that the file was last modified.
Returns the size of the file, or 0 if it does not exist or if it is a directory.
Returns the files under the directory for a directory File object.

Deletes the file or directory represented by this File object. The method returns
true if the deletion succeeds.

Renames the file or directory represented by this File object to the specified name
represented in dest. The method returns true if the operation succeeds.

Creates a directory represented in this File object. Returns true if the the directory is
created successfully.

Same as mkd1i r() except that it creates directory along with its parent directories if
the parent directories do not exist.

CUNY | Brooklyn College




Example Problem: Explore File
Properties

* Objective

* Write a program that demonstrates how to create files
in a platform-independent way and use the methods in
the File class to obtain their properties.

* Observe the example



Example Problem: Explore File

Properties

public class TestFileClass {
public static void main(String[] args) {

java.io.File file = new
java.io.File("image/us.gif");

System.out.printin("Does it exist? " +
file.exists());

System.out.printIn("The file has " +
file.length() + " bytes");

System.out.printin("Can it be read? " +
file.canRead());

System.out.printin("Can it be written? " +
file.canWrite());

System.out.printin("Is it a directory? " +
file.isDirectory());

System.out.printin("Is it a file? " +
file.isFile());

System.out.printin("Is it absolute? " +
file.isAbsolute());

System.out.printin("lIs it hidden? " +
file.isHidden());

System.out.printin("Absolute path is " +
file.getAbsolutePath());
System.out.printin("Last modified on " +

new java.util.Date(file.lastModified()));



File vs. Path

* The Path interface, Paths helper class, and Files
helper class

e Defined in the java.nio.file package (nio stands for “new

1/0)

* The Path interface, Paths helper class, and Files
helper class (in the java.nio.file package)

3/27/2024 CUNY | Brooklyn College


https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Paths.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Paths.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html

ldentifying a file using Java API

* The Path interface, Paths helper class, and Files helper
class (in the java.nio.file package)

e What is an “interface”? Treat it as a “class” for now.

e Some shortcomings of the design of the File class (in
the java.io package)

* Poor error handling;

* Limited meta data support, e.g., permissions, ownership,
security attributes (explore on your own);

* Not performance optimized (explore on your own)


https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Paths.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html
https://docs.oracle.com/javase/8/docs/api/java/io/File.html

File vs. Path: Error Handling (1)

File file = new File("Hwl.txt");
boolean success = file.delete();
VS.

Path path = Paths.get ("Hwl.txt");

Files.delete (path);



File vs. Path: Error Handling (2)

File file = new File("Hwl.txt");
File[] filelist = file.listFiles();
VS.

Path path = Paths.get ("Hwl.txt");
DirectoryStream<Path> paths =

Files.newDirectoryStream (path);



Using File and Path: Create Instances

* Create File/Path instance

java.io.File file = new java.io.File(“Hw1.txt");

java.nio.file.Path path = java.nio.file.Paths.get(“Hw1.txt");

java.io.File file = new File(“alice", “Hw1.txt");

java.nio.Path path = java.nio.file.Paths.get(“alice", “Hw1.txt");



Using File and Path: Converting

* Converting between File/Path

java.nio.Path pathFromFile = file.toPath();

java.io.File fileFromPath = path.toFile();



Using File and Path: Create File and
Directory

e Create file

boolean success = file.createNewtFile();

java.nio.Path newPath = java.nio.Files.createFile(path);

* Create directory

boolean success = file.mkdir();

java.nio.Path newPath = java.nio.Files.createDirectory(path);
* Create directories along the path

boolean result = file.mkdirs();

java.nio.Path newPath = java.nio.Files.createDirectories(path);



Using File and Path: Rename or Move
or Delete File

* Rename or move file

boolean success = file.renameTo(new java.io.File(“Hw?2.txt"));

java.nio.Path newPath = java.nio.Files.move(path, Paths.get(“bob/Hw1.txt"));

e Delete file

boolean success = file.delete();

java.nio.Files.delete(path);



Using File and Path: Metadata

* Reading supported metadata (java.io) * Reading supported metadata (java.nio)

boolean fileExists = file.exists(); boolean pathExists = Files.exists(path);

boolean filelsFile = file.isFile(); boolean pathlisFile = Files.isRegularFile(path);
boolean filelsDir = file.isDirectory(); boolean pathlsDir = Files.isDirectory(path);
boolean fileReadable = file.canRead(); boolean pathReadable = Files.isReadable(path);
boolean fileWritable = file.canWrite(); boolean pathWritable = Files.isWritable(path);
boolean fileExecutable = file.canExecute(); boolean pathExecutable = Files.isExecutable(path);

boolean fileHidden = file.isHidden(); boolean pathHidden = Files.isHidden(path);



Using File and Path: Path Names

* Get get absolute or canonical paths
String absolutePathStr = file.getAbsolutePath();
String canonicalPathStr = file.getCanonicalPath();

absolutePath = path.toAbsolutePath();

Path canonicalPath = path.toRealPath().normalize();



Using File and Path: List Directory
Content

e List directory content

String(] list = file.list();
File[] files = file.listFiles();

DirectoryStream<Path> paths = Files.newDirectoryStream(path);



Example Problem: Explore File
Properties

* Rewrite the file property exploration example using
java.nio



Questions?

* Representing file in Java

* java.io.File, java.nio.Path, java.nio.Paths, and
java.nio.Files



	Slide 1: CISC 3115 Java API Classes: File and Path
	Slide 2: Outline
	Slide 3: Identifying a file using Java API
	Slide 4: The File Class
	Slide 5: The File Class: API
	Slide 6: Example Problem: Explore File Properties
	Slide 7: Example Problem: Explore File Properties
	Slide 8: File vs. Path
	Slide 9: Identifying a file using Java API
	Slide 10: File vs. Path: Error Handling (1)
	Slide 11: File vs. Path: Error Handling (2)
	Slide 12: Using File and Path: Create Instances
	Slide 13: Using File and Path: Converting
	Slide 14: Using File and Path: Create File and Directory
	Slide 15: Using File and Path: Rename or Move or Delete File
	Slide 16: Using File and Path: Metadata
	Slide 17: Using File and Path: Path Names
	Slide 18: Using File and Path: List Directory Content
	Slide 19: Example Problem: Explore File Properties
	Slide 20: Questions?

