
CISC 3115

Polymorphism and Dynamic

Binding
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/28/2024 1CUNY | Brooklyn College

Outline

• Discussed

• Inheritance

• Superclass/supertype, subclass/subtype

• Inheritance and constructors in Java; Inheritance and instance methods in Java

• The Object class in Java

• Concept of Polymorphism; Polymorphism via inheritance

• Revisiting polymorphism via inheritance

• What is dynamic binding? How do we design programs with it?

• Write “generic method” with “generic parameter”

• How does Java determine the actual type?

• Casting (down-cast and up-cast)

• The instanceof operator

2/28/2024 CUNY | Brooklyn College 2

Dynamic Binding

• A method can be implemented in several classes

along the inheritance chain. The JVM decides which

method to invoke at runtime.

2/28/2024 CUNY | Brooklyn College 3

Person
+toString(): String

Employee
+toString(): String

Faculty
+toString(): String

Example: Dynamic Binding

public class DynamicBindingDemo {

public static void main(String[] args) {

m(new GraduateStudent());

m(new Student());

m(new Person());

m(new Object());

}

public static void m(Object x) {

System.out.println(x.toString());

}

}

2/28/2024 CUNY | Brooklyn College 4

class GraduateStudent extends Student {

}

class Student extends Person {

 public String toString() {

 return "Student";

 }

}

class Person extends Object {

 public String toString() {

 return "Person";

 }

}

Polymorphism Revisited

• Take a look at the example

public static void m(Object x) {

System.out.println(x.toString());

}

• Method m takes a parameter of the Object type. You can
invoke it with any object.

• Question: Why?

• An object of a subtype can be used wherever its supertype
value is required. This is in effect polymorphism.

2/28/2024 CUNY | Brooklyn College 5

Dynamic Binding: General Idea

• A class hierarchy: C1, C2, ..., Cn-1, and Cn

• Cn is the most general class, and C1 is the most specific class.

• Given o of declared type Ci, and of actual type Cj, where i >= j (Ci is more generic

than Cj)

• What happens when o.m()?

• JVM searches the hierarchy for method m

• the JVM searches the implementation for the method m in Cj, Cj+1, ..., Ci-1 and Ci, in

this order, until it is found. Once an implementation is found, the search stops and

the first-found implementation is invoked.

2/28/2024 CUNY | Brooklyn College 6

Cn Cn-1 C2 C1

Object

Since o is an instance of C1, o is also an

instance of C2, C3, …, Cn-1, and Cn

Method Matching and Binding

• Matching a method signature

• At compilation time, the Java compiler finds a matching
method according to method signature (method name,
parameter type, number of parameters, and order of
the parameters)

• Binding a method implementation

• At runtime, the JVM dynamically binds the
implementation of the method at runtime since the
method may be implemented in any classes in a class
hierarchy

2/28/2024 CUNY | Brooklyn College 7

“Generic” Programming via Dynamic

Binding
• Polymorphism allows methods

to be used generically for a wide
range of object arguments.

• How?

• A parameter of the method is of a
superclass (declared type)

• For the parameter, one may pass
an object of any of the
parameter’s subclasses

• JVM binds dynamically the
implementation of the methods of
the object

2/28/2024 CUNY | Brooklyn College 8

public class PolymorphismDemo {

 public static void main(String[] args) {

 m(new GraduateStudent());

 m(new Student());

 m(new Person());

 m(new Object());

 }

 public static void m(Object x) {

 System.out.println(x.toString());

 }

}

class GraduateStudent extends Student {

}

class Student extends Person {

 public String toString() {

 return "Student";

 }

}

class Person extends Object {

 public String toString() {

 return "Person";

 }

}

Questions?

• Concept of dynamic binding

• Difference between method matching and binding

• Generic programming via polymorphism and

dynamic binding

2/28/2024 CUNY | Brooklyn College 9

Casting Objects

• Casting can also be used to convert an reference

variable of one class type to another within an

inheritance hierarchy.

• Down-casting

• Up-casting

2/28/2024 CUNY | Brooklyn College 10

Down-casting

• Cast to a subtype

• It is allowed only when there is a possibility that it succeeds at run time

(e.g., type to be casted to matches actual type)

• Example: Person is a subclass of Student. 1) What is adam and ben’s actual

type and declared type? 2) Which one is allowed and which isn’t? 3) When

it isn’t, there will be an error. When does the error occurs?

2/28/2024 CUNY | Brooklyn College 11

Person ben = new Person("Ben Franklin", "00124", "2901 Bedford Ave");

Person adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

((Student)adam).haveTakenClass("CISC3115");

((Student)ben).haveTakenClass("CISC3115");

Person

Student
+haveTakenClass(String className): boolean

Up-casting

• Cast to a super type

• It is always allowed

• 1) In the above, which method does JVM bind

toString() to?

• 2) Is there anything wrong in the below?

2/28/2024 CUNY | Brooklyn College 12

Person
+toString(): String

Student
+haveTakenClass(String className): boolean
+toString(): Stirng

Student adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

((Person)adam).toString();

Student adam = new Student("Adam Smith", "00248", "2902 Bedford Ave");

((Person)adm).haveTakenClass("CISC3115");

Implicit Up-casting

• Since up-casting is always allowed, it can be done implicitly

• Example 1

• Object o = new Student(); // implicit casting

• Object o = (Object)(new Student()); // explicit casting

• Example 2

• Assume we have a method

• void m(Object x) {…}

• Then

• m(new Student()); // implicit casting

• m((Object)(new Student()); // explicit casting

• Object o = new Student(); m(o); // implicit casting

• Object o = new Student; m((Object)o); // explicit casting

2/28/2024 CUNY | Brooklyn College 13

Questions?

• Casting

• Concept

• Down-casting and explicit casting

• Up-casting and implicit casting

• How are they related to declared type and actual type?

• Under what condition you can do down-casting? Up-

casting?

2/28/2024 CUNY | Brooklyn College 14

The instanceof Operator

• Dynamic binding may fail at runtime. Programmers

should proactively determine whether it succeeds

or fails.

• How?

• The instanceof Operator

• Test whether an object is an instance of a class

2/28/2024 CUNY | Brooklyn College 15

The instanceof Operator: Example

Object myObject = new Circle();

... // Some lines of code

/** Perform casting if myObject is an instance of Circle */

if (myObject instanceof Circle) {

System.out.println("The circle diameter is " +

((Circle)myObject).getDiameter());

...

}

2/28/2024 CUNY | Brooklyn College 16

This may fail at runtime.
How did we prevent it?

Examples: Dynamic Binding and

Casting

• Demonstrating polymorphism, dynamic binding,

and casting

• Two examples

2/28/2024 CUNY | Brooklyn College 17

Questions?

• Concept of dynamic binding

• Concept of casting

• Concept of declared type and actual type

• The instanceof Operator

• Examples for polymorphism and dynamic binding

2/28/2024 CUNY | Brooklyn College 18

Exercise

• Use the class hierarchy of a few fruits in Question 11.9.3 to
complete the following tasks

• Implement the 5 classes with a “name” data field and “toString():
String” method. The return value of the toString() method must
contain the class name, and the value of the “name” data field, e.g.,

• Apple[name=“small red”]

• Add method “getApplePieRecipe(): String” to the Apple class.

• Add method “getOrangeJuiceRecipe(): String” to the Orange class.

• Write a FruitClient class where you design a few statements to
demonstrate 1) polymorphisms, 2) dynamic binding, and 3) down-
casting and up-casting. For each, write a comment explain how the
statements you write demonstrate each. Be sure to use instanceof
when doing down-casting

2/28/2024 CUNY | Brooklyn College 19

	Slide 1: CISC 3115 Polymorphism and Dynamic Binding
	Slide 2: Outline
	Slide 3: Dynamic Binding
	Slide 4: Example: Dynamic Binding
	Slide 5: Polymorphism Revisited
	Slide 6: Dynamic Binding: General Idea
	Slide 7: Method Matching and Binding
	Slide 8: “Generic” Programming via Dynamic Binding
	Slide 9: Questions?
	Slide 10: Casting Objects
	Slide 11: Down-casting
	Slide 12: Up-casting
	Slide 13: Implicit Up-casting
	Slide 14: Questions?
	Slide 15: The instanceof Operator
	Slide 16: The instanceof Operator: Example
	Slide 17: Examples: Dynamic Binding and Casting
	Slide 18: Questions?
	Slide 19: Exercise

