
CISC 3115

Stack and Queue
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

4/15/2024 1CUNY | Brooklyn College

Module Outline

• Discussed

• Concept of data structure

• Use data structures

• List

• Sorting and searching in lists and arrays

• To discuss

• Stack

• Queue and priority queue

• Set and map

11/15/2018 CUNY | Brooklyn College 2

Outline of This Lecture

• Stack

• Queue

• Priority queue

11/15/2018 CUNY | Brooklyn College 3

The Stack Data Structure

• A data structure stores data in a last-in, first-out

fashion

11/15/2018 CUNY | Brooklyn College 4

The Stack Class

• An implementation of the stack data structure in

Java

• It represents a last-in-first-out stack of objects.

• The elements are accessed only from the top of the

stack. (You can only retrieve, insert, or remove an

element from the top of the stack.)

11/15/2018 CUNY | Brooklyn College 5

The Stack Class

• 5 methods added to Vector to implement a stack

11/15/2018 CUNY | Brooklyn College 6

java.util.Stack<E>

+Stack()

+empty(): boolean

+peek(): E

+pop(): E

+push(o: E) : E

+search(o: Object) : int

java.util.Vector<E>

Creates an empty stack.

Returns true if this stack is empty.

Returns the top element in this stack.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

Returns the position of the specified element in this stack.

The Bigger Picture

4/15/2024 CUNY | Brooklyn College 7

Vector

• java.util.Vector<E>

• Like java.util.ArrayList<E>, it implements a growable array of
objects.

• Like an array, it contains components that can be accessed using an integer
index.

• However, the size of a Vector can grow or shrink as needed to
accommodate adding and removing items after the Vector has been
created.

• How is it different from the ArrayList class?

• Vector is synchronized, while ArrayList not

• If a thread-safe implementation is not needed, it is recommended
to use ArrayList in place of Vector.

4/15/2024 CUNY | Brooklyn College 8

Stack: Example 1

• Problem: we want to implement a calculator that
evaluates an expression like (1 + 2) * 3

• Solution: covert the expression (the infix notation)
to the postfix notation

• 1 2 + 3 *

• Evaluate it using a Stack

• Scan the expression

• push 1, push 2, see +, pop 2, pop 1, evaluate 1+2, push 3, push
3, see *, pop 3, pop 3, evaluate 3*3

11/15/2018 CUNY | Brooklyn College 9

Stack: Example 2

• Problem: we have implemented a calculator that

evaluates postfix expression like 1 2 + 3 * using a

stack. But were we given infix expressions?

• Solution: covert the expression (the infix notation)

to the postfix notation using a sack

• Called the Shunting Yard algorithm

• Developed by Edsger Dijkstra

4/15/2024 CUNY | Brooklyn College 10

https://www.cs.utexas.edu/~EWD/MCReps/MR35.PDF#page=28

Shunting Yard

• One of the MTA’s

4/15/2024 CUNY | Brooklyn College 11

4/15/2024 CUNY | Brooklyn College 12

From https://en.wikipedia.org/wiki/Shunting-yard_algorithm

https://en.wikipedia.org/wiki/Shunting-yard_algorithm

Algorithm (infix to postfix)

Phase 1: Scanning the expression

The program scans the expression from left to right to extract operands, operators, and the
parentheses.

1.1. If the extracted item is an operand, push it to operandStack.

1.2. If the extracted item is a + or - operator, process all the operators at the top of
operatorStack and push the extracted operator to operatorStack.

1.3. If the extracted item is a * or / operator, process the * or / operators at the top of
operatorStack and push the extracted operator to operatorStack.

1.4. If the extracted item is a (symbol, push it to operatorStack.

1.5. If the extracted item is a) symbol, repeatedly process the operators from the top of
operatorStack until seeing the (symbol on the stack.

Phase 2: Clearing the stack

Repeatedly process the operators from the top of operatorStack until operatorStack is empty.

4/15/2024 CUNY | Brooklyn College 13

4/15/2024 CUNY | Brooklyn College 14

Questions?

• Concept of stack

• Use stack

• Difference between Java’s Vector and ArrayList

classes

11/15/2018 CUNY | Brooklyn College 15

Queue

• A queue is a first-in/first-out data structure.

• Elements are appended to the end of the queue and are

removed from the beginning of the queue.

• Head and tail of a queue

• Access/remove from head

• Add to tail

4/15/2024 CUNY | Brooklyn College 16

Priority Queue

• In a priority queue, elements are assigned

priorities.

• When accessing elements, the element with the

highest priority is removed first.

• However, among elements with the same priority,

the first-in/first-out discipline is applied.

4/15/2024 CUNY | Brooklyn College 17

The Queue Interface

4/15/2024 CUNY | Brooklyn College 18

The Bigger Picture

4/15/2024 CUNY | Brooklyn College 19

Using the Queue Data Structure:

Question?

• Wait! The Queue in an interface in Java, how do I

use a Queue in my program?

4/15/2024 CUNY | Brooklyn College 20

Answer: The Bigger Picture

4/15/2024 CUNY | Brooklyn College 21

Using the Queue Data Structure:

Question?

• What is Deque? How do I pronounce it?

4/15/2024 CUNY | Brooklyn College 22

Deque

• java.util.Deque

• An interface for “double ended queue”,

pronounced as “deck”

• A linear collection that supports element insertion and

removal at both ends.

4/15/2024 CUNY | Brooklyn College 23

Using LinkedList as Queue

4/15/2024 CUNY | Brooklyn College 24

Queue Operations

• Defined in the Queue interface

4/15/2024 CUNY | Brooklyn College 25

Summary of Queue methods

Throws exception Returns special value

Insert add(e) offer(e)

Remove remove() poll()

Examine element() peek()

Priority Queue in Java

4/15/2024 CUNY | Brooklyn College 26

The PriorityQueue Class

• Also example Java API documentation for the class

and AbstractQueue

4/15/2024 CUNY | Brooklyn College 27

PriorityQueue Basics in Java

• PriorityQueue sorts elements in natural order that

realizes the concept of priority

• Sort passengers based seat class

• [John, 1st class], [Tom, 1st class], [Joan, 1st class], [Emma,

1st class], [Eric, economy], [Erica, economy]

• They form a queue, however, the 1st class passengers

will be served first.

4/15/2024 CUNY | Brooklyn College 28

Queue and PriorityQueue: Examples

• Queue basics

• PriorityQueue basics

• Assign seats to passengers in a queue on an

airplane

4/15/2024 CUNY | Brooklyn College 29

Stack and Queue: Examples in

Textbook

• Examine the examples in the textook

4/15/2024 CUNY | Brooklyn College 30

Questions?

• Concept of queue and priority queue

• Queue and priority queue in Java

• Use queue and priority queue in your programs

4/15/2024 CUNY | Brooklyn College 31

	Slide 1: CISC 3115 Stack and Queue
	Slide 2: Module Outline
	Slide 3: Outline of This Lecture
	Slide 4: The Stack Data Structure
	Slide 5: The Stack Class
	Slide 6: The Stack Class
	Slide 7: The Bigger Picture
	Slide 8: Vector
	Slide 9: Stack: Example 1
	Slide 10: Stack: Example 2
	Slide 11: Shunting Yard
	Slide 12
	Slide 13: Algorithm (infix to postfix)
	Slide 14
	Slide 15: Questions?
	Slide 16: Queue
	Slide 17: Priority Queue
	Slide 18: The Queue Interface
	Slide 19: The Bigger Picture
	Slide 20: Using the Queue Data Structure: Question?
	Slide 21: Answer: The Bigger Picture
	Slide 22: Using the Queue Data Structure: Question?
	Slide 23: Deque
	Slide 24: Using LinkedList as Queue
	Slide 25: Queue Operations
	Slide 26: Priority Queue in Java
	Slide 27: The PriorityQueue Class
	Slide 28: PriorityQueue Basics in Java
	Slide 29: Queue and PriorityQueue: Examples
	Slide 30: Stack and Queue: Examples in Textbook
	Slide 31: Questions?

