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Module Outline

• Discussed

• Concept of data structure

• Use data structures

• List

• Sorting and searching in lists and arrays

• To discuss

• Stack

• Queue and priority queue

• Set and map
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Outline of This Lecture

• Stack

• Queue

• Priority queue
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The Stack Data Structure

• A data structure stores data in a last-in, first-out 

fashion
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The Stack Class

• An implementation of the stack data structure in 

Java

• It represents a last-in-first-out stack of objects. 

• The elements are accessed only from the top of the 

stack. (You can only retrieve, insert, or remove an 

element from the top of the stack.)

11/15/2018 CUNY | Brooklyn College 5



The Stack Class

• 5 methods added to Vector to implement a stack
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java.util.Stack<E> 
 

+Stack() 

+empty(): boolean 

+peek(): E 

+pop(): E 

+push(o: E) : E 

+search(o: Object) : int 

 

java.util.Vector<E> 
 

Creates an empty stack. 

Returns true if this stack is empty. 

Returns the top element in this stack. 

Returns and removes the top element in this stack. 

Adds a new element to the top of this stack. 

Returns the position of the specified element in this stack. 

 



The Bigger Picture
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Vector

• java.util.Vector<E>

• Like java.util.ArrayList<E>, it implements a growable array of 
objects. 

• Like an array, it contains components that can be accessed using an integer 
index. 

• However, the size of a Vector can grow or shrink as needed to 
accommodate adding and removing items after the Vector has been 
created.

• How is it different from the ArrayList class?

• Vector is synchronized, while ArrayList not

• If a thread-safe implementation is not needed, it is recommended 
to use ArrayList in place of Vector.
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Stack: Example 1

• Problem: we want to implement a calculator that 
evaluates an expression like (1 + 2) * 3

• Solution: covert the expression (the infix notation) 
to the postfix notation

• 1 2 + 3 *

• Evaluate it using a Stack

• Scan the expression

• push 1, push 2, see +, pop 2, pop 1, evaluate 1+2, push 3, push 
3, see *, pop 3, pop 3, evaluate 3*3
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Stack: Example 2

• Problem: we have implemented a calculator that 

evaluates postfix expression like 1 2 + 3 * using a 

stack. But were we given infix expressions?  

• Solution: covert the expression (the infix notation) 

to the postfix notation using a sack

• Called the Shunting Yard algorithm

• Developed by Edsger Dijkstra
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https://www.cs.utexas.edu/~EWD/MCReps/MR35.PDF#page=28


Shunting Yard

• One of the MTA’s
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From https://en.wikipedia.org/wiki/Shunting-yard_algorithm 

https://en.wikipedia.org/wiki/Shunting-yard_algorithm


Algorithm (infix to postfix)

Phase 1: Scanning the expression

The program scans the expression from left to right to extract operands, operators, and the 
parentheses.

1.1. If the extracted item is an operand, push it to operandStack.

1.2. If the extracted item is a + or - operator, process all the operators at the top of 
operatorStack and push the extracted operator to operatorStack.

1.3. If the extracted item is a * or / operator, process the * or / operators at the top of 
operatorStack and push the extracted operator to operatorStack.

1.4. If the extracted item is a ( symbol, push it to operatorStack.

1.5. If the extracted item is a ) symbol, repeatedly process the operators from the top of 
operatorStack until seeing the ( symbol on the stack.

Phase 2: Clearing the stack

Repeatedly process the operators from the top of operatorStack until operatorStack is empty.
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Questions?

• Concept of stack

• Use stack

• Difference between Java’s Vector and ArrayList 

classes
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Queue

• A queue is a first-in/first-out data structure.

• Elements are appended to the end of the queue and are 

removed from the beginning of the queue.

• Head and tail of a queue

• Access/remove from head

• Add to tail

4/15/2024 CUNY | Brooklyn College 16



Priority Queue

• In a priority queue, elements are assigned 

priorities. 

• When accessing elements, the element with the 

highest priority is removed first.

• However, among elements with the same priority, 

the first-in/first-out discipline is applied. 
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The Queue Interface

4/15/2024 CUNY | Brooklyn College 18



The Bigger Picture
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Using the Queue Data Structure: 

Question?

• Wait! The Queue in an interface in Java, how do I 

use a Queue in my program? 
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Answer: The Bigger Picture
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Using the Queue Data Structure: 

Question?

• What is Deque? How do I pronounce it? 
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Deque

• java.util.Deque

• An interface for “double ended queue”, 

pronounced as “deck”

• A linear collection that supports element insertion and 

removal at both ends.
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Using LinkedList as Queue
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Queue Operations

• Defined in the Queue interface
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Summary of Queue methods

Throws exception Returns special value

Insert add(e) offer(e)

Remove remove() poll()

Examine element() peek()



Priority Queue in Java
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The PriorityQueue Class

• Also example Java API documentation for the class 

and AbstractQueue
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PriorityQueue Basics in Java

• PriorityQueue sorts elements in natural order that 

realizes the concept of priority

• Sort passengers based seat class

• [John, 1st class], [Tom, 1st class], [Joan, 1st class], [Emma, 

1st class], [Eric, economy], [Erica, economy]

• They form a queue, however, the 1st class passengers 

will be served first. 

4/15/2024 CUNY | Brooklyn College 28



Queue and PriorityQueue: Examples

• Queue basics

• PriorityQueue basics

• Assign seats to passengers in a queue on an 

airplane
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Stack and Queue: Examples in 

Textbook

• Examine the examples in the textook

4/15/2024 CUNY | Brooklyn College 30



Questions?

• Concept of queue and priority queue

• Queue and priority queue in Java

• Use queue and priority queue in your programs
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