
CISC 3115

Lists and Collection API
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

4/15/2024 1CUNY | Brooklyn College

Module Outline

• Concept of data structure

• Use data structures

• List

• Sorting and search in lists

• Stack

• Queue and priority queue

• Set and map

4/15/2024 CUNY | Brooklyn College 2

Outline of This Lecture

• Data structure and Java Collections

• Concept of data structure and Java Collection

Framework

• Type hierarchy of Java Collection Framework

• The Collection interface

• List, ArrayList, and LinkedList

4/15/2024 CUNY | Brooklyn College 3

Data Structure

• A collection of data organized in some fashion in a

program.

• Data elements

• Operations for accessing and manipulating the data elements

• In Java, how do we represent data and operations?

• Data: primitive data type variables; objects and reference

variables

• Operations: methods

4/15/2024 CUNY | Brooklyn College 4

Java Collection Framework

• A collection is an object that represents a group of
objects

• Essentially, a collection is a representation/an
implementation of a data structure

• Java Collection Framework

• A unified architecture for representing and manipulating
collections, enabling collections to be manipulated
independently of implementation details.

• Data structures: list, stack, and queue

4/15/2024 CUNY | Brooklyn College 5

Java Collection Framework Hierarchy

4/15/2024 CUNY | Brooklyn College 6

The Collection Interface

4/15/2024 CUNY | Brooklyn College 7

4/15/2024 CUNY | Brooklyn College 8

«interface»

java.util.Collection<E>

+add(e: E): boolean

+addAll(c: Collection<? extends E>):
boolean

+clear(): void

+contains(o: Object): boolean

+containsAll(c:
Collection<?>):boolean

+isEmpty(): boolean

+remove(o: Object): boolean

+removeAll(c: Collection<?>):
boolean

+retainAll(c: Collection<?>):
boolean

+size(): int

+toArray(): Object[]

+stream(): Stream default

+parallelStream(): Stream default

Adds a new element e to this collection.

Adds all the elements in the collection c to this collection.

Removes all the elements from this collection.

Returns true if this collection contains the element o.

Returns true if this collection contains all the elements in c.

Returns true if this collection contains no elements.

Removes the element o from this collection.

Removes all the elements in c from this collection.

Retains the elements that are both in c and in this collection.

Returns the number of elements in this collection.

Returns an array of Object for the elements in this collection.

Returns a stream from this collection (covered in Ch 23).

Returns a parallel stream from this collection (covered in Ch

23).

«interface»

java.util.Iterator<E>

+hasNext(): boolean

+next(): E

+remove(): void

Returns true if this iterator has more elements to traverse.

Returns the next element from this iterator.

Removes the last element obtained using the next method.

«interface»

java.lang.Iterable<E>

+iterator(): Iterator<E>

+forEach(action: Consumer<? super

E>): default void

Returns an iterator for the elements in this collection.

Performs an action for each element in this iterator.

Questions?

• How about we take a look at Java API

documentation about these?

• Concept of data structure

• Concept of Java Collection Framework

• Relationship between data structure and Java

Collection

• Type Hierarchy of Java Collection Framework

4/15/2024 CUNY | Brooklyn College 9

The List Interface

4/15/2024 CUNY | Brooklyn College 10

The List Data Structure

• A list stores elements in a sequential order, and

allows the user to specify where the element is

stored.

• The user may be able to access the elements by

index.

• However, in general, one should not assume that it takes

equal amount of time to access different elements using

their indices

4/15/2024 CUNY | Brooklyn College 11

The List Interface

4/15/2024 CUNY | Brooklyn College 12

ListIterator?

4/15/2024 CUNY | Brooklyn College 13

Recall: The Collection Interface

4/15/2024 CUNY | Brooklyn College 14

«interface»

java.util.Collection<E>

+add(e: E): boolean

+addAll(c: Collection<? extends E>):

boolean

+clear(): void

+contains(o: Object): boolean

+containsAll(c:

Collection<?>):boolean

+isEmpty(): boolean

+remove(o: Object): boolean

+removeAll(c: Collection<?>):

boolean

+retainAll(c: Collection<?>):

boolean

+size(): int

+toArray(): Object[]

+stream(): Stream default

+parallelStream(): Stream default

Adds a new element e to this collection.

Adds all the elements in the collection c to this collection.

Removes all the elements from this collection.

Returns true if this collection contains the element o.

Returns true if this collection contains all the elements in c.

Returns true if this collection contains no elements.

Removes the element o from this collection.

Removes all the elements in c from this collection.

Retains the elements that are both in c and in this collection.

Returns the number of elements in this collection.

Returns an array of Object for the elements in this collection.

Returns a stream from this collection (covered in Ch 23).

Returns a parallel stream from this collection (covered in Ch

23).

«interface»

java.util.Iterator<E>

+hasNext(): boolean

+next(): E

+remove(): void

Returns true if this iterator has more elements to traverse.

Returns the next element from this iterator.

Removes the last element obtained using the next method.

«interface»

java.lang.Iterable<E>

+iterator(): Iterator<E>

+forEach(action: Consumer<? super

E>): default void

Returns an iterator for the elements in this collection.

Performs an action for each element in this iterator.

The ListIterator

4/15/2024 CUNY | Brooklyn College 15

Questions?

• The List interface

• Methods and type hierarchy

• Iterator vs. ListInterator

4/15/2024 CUNY | Brooklyn College 16

Lists: ArrayList and LinkedList

4/15/2024 CUNY | Brooklyn College 17

ArrayList and LinkedList

• List

• stores elements in a sequential order,

• allows the user to specify where the element is stored.

• the user may be able to access the elements by index.

• ArrayList

• Efficient random access: access it like an array: access any element at (almost) equal
amount of time and efficiently (called near-constant-time positional access)

• In general, costly to remove and insert elements

• LinkedList

• Efficient to add and remove elements anywhere

• Costly random access (does not provide near-constant-time positional access)

4/15/2024 CUNY | Brooklyn College 18

The ArrayList

4/15/2024 CUNY | Brooklyn College 19

ArrayList: java.util.ArrayList

4/15/2024 CUNY | Brooklyn College 20

«interface»
java.util.List<E>

Creates an empty list with the default initial capacity.

Creates an array list from an existing collection.

Creates an empty list with the specified initial capacity.

Trims the capacity of this ArrayList instance to be the

list's current size.

+ArrayList()

+ArrayList(c: Collection<? extends E>)

+ArrayList(initialCapacity: int)

+trimToSize(): void

«interface»
java.util.Collection<E>

java.util.ArrayList<E>

Representing a group of objects of type E
(elements)

Representing a group of objects of type
E (elements) and these objects are
stored in a sequential order, can specify
where an element is stored.

Additional property: random access like an array

Additional Properties of ArrayList

• “Resizable-array implementation of the List interface.”

• “The size, isEmpty, get, set, iterator, and listIterator

operations run in constant time. “

• “The add operation runs in amortized constant time,

that is, adding n elements requires O(n) time.”

• “All of the other operations run in linear time (roughly

speaking). The constant factor is low compared to that

for the LinkedList implementation. “

4/15/2024 CUNY | Brooklyn College 21

The LinkedList

4/15/2024 CUNY | Brooklyn College 22

LinkedList: java.util.LinkedList

4/15/2024 CUNY | Brooklyn College 23

«interface»
java.util.List<E>

Creates a default empty linked list.

Creates a linked list from an existing collection.

Adds the object to the head of this list.

Adds the object to the tail of this list.

Returns the first element from this list.

Returns the last element from this list.

Returns and removes the first element from this list.

Returns and removes the last element from this list.

+LinkedList()

+LinkedList(c: Collection<? extends E>)

+addFirst(o: E): void

+addLast(o: E): void

+getFirst(): E

+getLast(): E

+removeFirst(): E

+removeLast(): E

«interface»
java.util.Collection<E>

java.util.LinkedList<E>

Representing a group of objects of type E
(elements)

Representing a group of objects of type
E (elements) and these objects are
stored in a sequential order, can specify
where an element is stored.

Additional Properties of LinkedList

• “All of the operations perform as could be expected

for a doubly-linked list.”

• “Operations that index into the list will traverse the

list from the beginning or the end, whichever is

closer to the specified index. “

4/15/2024 CUNY | Brooklyn College 24

Explore ArrayList and LinkedList:

Examples
• Random access and random access cost

• Indexing and indexing cost

• Insertion, deletion, insertion and deletion cost

• Iterating lists

• Using for loop or the enhanced for loop

• Using Iterator

• Using Listerator

• Updating objects in lists

4/15/2024 CUNY | Brooklyn College 25

Array, ArrayList, and LinkedList:

When to Use?
• Three key questions

• Need random access?

• Need insertion or deletion other than head and tail?

• Know the size before hand?

• ArrayList: if your application needs to support random access through
an index without inserting or removing elements from any places other
than the end

• LinkedList: if your application requires the insertion or deletion of
elements from any places in the list (using an interator)

• Array: an array is fixed in size while a list can grow or shrink dynamically.
If your application knows the size and does not require insertion or
deletion of elements, the most efficient data structure is the array.

4/15/2024 CUNY | Brooklyn College 26

Questions?

• Use ArrayList and LinkedList

• Access: random and sequential

• Use loops and iterators

• Update objects in lists

• Concept and type hierarchy of ArrayList and Linked List

• When to use array, ArrayList, and LinkedList?

4/15/2024 CUNY | Brooklyn College 27

	Slide 1: CISC 3115 Lists and Collection API
	Slide 2: Module Outline
	Slide 3: Outline of This Lecture
	Slide 4: Data Structure
	Slide 5: Java Collection Framework
	Slide 6: Java Collection Framework Hierarchy
	Slide 7: The Collection Interface
	Slide 8
	Slide 9: Questions?
	Slide 10: The List Interface
	Slide 11: The List Data Structure
	Slide 12: The List Interface
	Slide 13: ListIterator?
	Slide 14: Recall: The Collection Interface
	Slide 15: The ListIterator
	Slide 16: Questions?
	Slide 17: Lists: ArrayList and LinkedList
	Slide 18: ArrayList and LinkedList
	Slide 19: The ArrayList
	Slide 20: ArrayList: java.util.ArrayList
	Slide 21: Additional Properties of ArrayList
	Slide 22: The LinkedList
	Slide 23: LinkedList: java.util.LinkedList
	Slide 24: Additional Properties of LinkedList
	Slide 25: Explore ArrayList and LinkedList: Examples
	Slide 26: Array, ArrayList, and LinkedList: When to Use?
	Slide 27: Questions?

