
CISC 3115 MY3

Defining Java Class
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

1/29/2024 1CUNY | Brooklyn College

Outline

• Defining classes for objects

• UML class diagram

• Accessing objects via reference variables

1/29/2024 CUNY | Brooklyn College 2

Recall: Authoring a Java Program

• Let’s consider the following 5 components

• Requirement

• Design

• Implementation

• Verification (commonly, testing)

• Validation

• Call them 5 components instead of 5 steps, because it is

not necessary to follow them in the above order

1/29/2024 CUNY | Brooklyn College 3

Recall: Requirements

• About answering question:

• What does the “customer” want? Call the answer the
requirement.

• In the class:

• What does the instructor want?

• For your own exploration:

• What do I want?

• Programmers provide a technical solutions in the
means of software/programs to customers

• Is what we learned sufficient?

1/29/2024 CUNY | Brooklyn College 4

Review: What Have We Learned for

Java Programming?

1/29/2024 CUNY | Brooklyn College 5

Review: What We Have Learned for

Java Programming

• A divide-and-conquer problem solving strategy

• Divide the problem into smaller problem, and solve each

using a Java method (or function)

• Java programming language

1/29/2024 CUNY | Brooklyn College 6

Review: What We Have Learned?

• Functions (In Java, we call
them methods)

• Data types and variables

• Arrays

• Statements

• Comments

• Flow control

• Selections

• Iterations/Loops

• …

class PlayNumbers {

public static void main(String[] args) {

}

public static int addTwo(int a, int b) {

return a + b;

}

public static boolean isPositive(int a) {

if (a > 0) return true;

else return false;

}

// ……

}

1/29/2024 CUNY | Brooklyn College 7

Review: Arrays and Something New?

• Examine the code,

• What data type is “String[]
args” in the main
method’s parameter list?

• Can we print it out?

• But who calls main and
passes the argument to it?

• Something new?

• Command line arguments

1/29/2024 CUNY | Brooklyn College 8

class PlayNumbers {

public static void main(String[] args) {

}

public static int addTwo(int a, int b) {

return a + b;

}

public static boolean isPositive(int a) {

if (a > 0) return true;

else return false;

}

// ……

}

Questions

• Have you been working on CodeLab assignments?

• Have you been reviewing topics in CISC 1115?

• How to use the command line arguments?

1/29/2024 CUNY | Brooklyn College 9

From Class to Objects

1/29/2024 CUNY | Brooklyn College 10

class PlayNumbers {

 public static void main(String[] args) {

 }

 public static int addTwo(int a, int b) {

 return a + b;

 }

 public static boolean isPositive(int a) {

 if (a > 0) return true;

 else return false;

 }

 // ……

}

class PlayNumbersToo {

 private int op1, op2;

 public static void main(String[] args) {

 }

 public int addTwo(int a, int b) {

 return a + b;

 }

 public boolean isPositive(int a) {

 if (a > 0) return true;

 else return false;

 }

 // ……

}

But, what’s the benefit?

1/29/2024 CUNY | Brooklyn College 11

Object-Oriented Programming

• Problem solving and programming using objects

• which enables a divide-and-conquer problem solving strategy using
multiple classes and objects and via object-oriented “modeling”

• An object represents an entity in the real world that can be
distinctly identified.

• Student, instructor, class

• Building, room, desk

• Circle, rectangle

• Button, menu

• Loan, sales transaction

1/29/2024 CUNY | Brooklyn College 12

Object, State, and Behavior

• An object has a unique identity, state, and

behaviors.

• The state of an object consists of a set of data fields

(also known as properties) with their current values.

• The behavior of an object is defined by a set of methods

representing what it does.

1/29/2024 CUNY | Brooklyn College 13

Classes

• Define objects of the same type, a template that an

object can be created from.

• A Java class uses variables to define data fields and

methods to define behaviors. Additionally, a class

provides a special type of methods, known as

constructors, which are invoked to construct

objects from the class.

1/29/2024 CUNY | Brooklyn College 14

Objects and Classes

• From a class, we can create objects of the class

1/29/2024 CUNY | Brooklyn College 15

Class Name: Circle

Data Fields:

radius is _______

Methods:

getArea

Circle Object 1

Data Fields:

radius is 10

Circle Object 2

Data Fields:

radius is 25

Circle Object 3

Data Fields:

radius is 125

A class template

Three objects of

the Circle class

Objects and Classes: State and

Behavior

• A Java class uses variables to define data fields and

methods to define behaviors.

• The state of an object of the class corresponds to the

data fields and their values.

• The behavior of the object corresponds to the methods.

• Constructors

• A special type of methods that are invoked to initialize the data

fields when the object is being constructed.

1/29/2024 CUNY | Brooklyn College 16

A Circle Class

1/29/2024 CUNY | Brooklyn College 17

class Circle {

/** The radius of this circle */

double radius = 1.0;

/** Construct a circle object */

Circle() {

}

/** Construct a circle object */

Circle(double newRadius) {

radius = newRadius;

}

/** Return the area of this circle */

double getArea() {

return radius * radius * 3.14159;

}

}

Data field

Method

Constructors

More
discussion

about
these in

next class

Writing the Circle Class

1/29/2024 CUNY | Brooklyn College 18

Reading the Circle Class

• Compared to the programs you written, is there any notable difference?

• Does it have a main method?

• Can you run it?

• Can you compile it?

• Is there any constructors? Where are they? How are constructors named? Does
a constructor have a return type?

• Where are the methods that define the behavior an object created from the
class? Must a method have a return type? What are the return types?

• Can method take a parameter? Must a parameter have a type and name?

1/29/2024 CUNY | Brooklyn College 19

Representing Class and Objects in

UML Diagram

• UML = Unified Modeling Language

1/29/2024 CUNY | Brooklyn College 20

Circle

radius: double

Circle()

Circle(newRadius: double)

getArea(): double

getPerimeter(): double

setRadius(newRadius:

double): void

circle1: Circle

radius = 1.0

Class name

Data fields

Constructors and

methods

circle2: Circle

radius = 25

circle3: Circle

radius = 125

UML Class Diagram

UML notation
for objects

Reading the UML Diagram

• How does a class diagram depict a class?

• How is a data field presented?

• How is a constructor represented?

• How is a method represented?

• How is an object represented in UML?

1/29/2024 CUNY | Brooklyn College 21

Observations

• We can compile the Circle class, but we cannot run

it. Why can we not run it?

• The Circle class acts as a template from which

objects of the Circle class can be created, but have

we created any objects from the Circle class?

1/29/2024 CUNY | Brooklyn College 22

The TestCircle Class

• It has a main method

• A number of Circle objects are created.

• The areas of the Circle objects are computed and

printed out

1/29/2024 CUNY | Brooklyn College 23

Writing the TestCircle Class

1/29/2024 CUNY | Brooklyn College 24

Compiling and Running the Program

1/29/2024 CUNY | Brooklyn College 25

Setters and Getters

• Getters are methods to return the value of a data

field of an object

• Setters are methods to change the value of a data

field of an object

1/29/2024 CUNY | Brooklyn College 26

class Circle {
// …
 public void setRadius(double r) {
 this.r = r;
 }
 public void getRadius() {
 return r;
 }
//…
}

Accessing objects via reference

variables

• Using classes with instance methods and varaibles

• Create objects from classes

• Access objects via reference variables

Example:

Circle circle = new Circle(25);

area = circle.getArea();

Where circle is a reference variable that references a
Circle object

1/29/2024 CUNY | Brooklyn College 27

Static (Class) vs. Instance Variables

and Methods

• Instance variables and instance methods defined in
a class, but are part of an object (not the class).

• static variables and methods defined in a class, and
also part of the class.

1/29/2024 CUNY | Brooklyn College 28

Given
class A {
 public static void m1() {
 }

 public void m2() {
 }
}

Correct or Wrong?
class B {
 public void m1() {
 A.m1();
 A.m2();
 }
}

In-Class Exercise 1

• Write the Circle and TestCircle classes

• Compile and run the program

• Have free time? Go to next slide

• The instructor will observe demos of the program

from randomly selected students.

1/29/2024 CUNY | Brooklyn College 29

In-Class Exercise 2

• Write two classes, TV and TestTV as illustrated in

Listings 9.3 and 9.4 in the textbook

• Compile and run the program

1/29/2024 CUNY | Brooklyn College 30

Questions

• Concepts of objects and classes

• Relationship between objects and classes

• Defining class in Java

• Depicting class in UML

• Creating and referencing objects

1/29/2024 CUNY | Brooklyn College 31

	Slide 1: CISC 3115 MY3 Defining Java Class
	Slide 2: Outline
	Slide 3: Recall: Authoring a Java Program
	Slide 4: Recall: Requirements
	Slide 5: Review: What Have We Learned for Java Programming?
	Slide 6: Review: What We Have Learned for Java Programming
	Slide 7: Review: What We Have Learned?
	Slide 8: Review: Arrays and Something New?
	Slide 9: Questions
	Slide 10: From Class to Objects
	Slide 11: But, what’s the benefit?
	Slide 12: Object-Oriented Programming
	Slide 13: Object, State, and Behavior
	Slide 14: Classes
	Slide 15: Objects and Classes
	Slide 16: Objects and Classes: State and Behavior
	Slide 17: A Circle Class
	Slide 18: Writing the Circle Class
	Slide 19: Reading the Circle Class
	Slide 20: Representing Class and Objects in UML Diagram
	Slide 21: Reading the UML Diagram
	Slide 22: Observations
	Slide 23: The TestCircle Class
	Slide 24: Writing the TestCircle Class
	Slide 25: Compiling and Running the Program
	Slide 26: Setters and Getters
	Slide 27: Accessing objects via reference variables
	Slide 28: Static (Class) vs. Instance Variables and Methods
	Slide 29: In-Class Exercise 1
	Slide 30: In-Class Exercise 2
	Slide 31: Questions

