
CISC 3115

Abstract Class and Method
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

4/8/2024 1CUNY | Brooklyn College

Outline

• Recap

• Inheritance and polymorphism

• Abstract method and class

4/8/2024 CUNY | Brooklyn College 2

Recap: Inheritance and

Polymorphism

• Problem: leveraging on polymorphism, write

generic method to compute total areas of a list of

geometric shapes.

4/8/2024 CUNY | Brooklyn College 3

The Shape Class Hierarchy

4/8/2024 CUNY | Brooklyn College 4

Shape

+ getArea(): double

Circle

+ getArea(): double

Rectangle

+ getArea(): double

Recap: Inheritance and

Polymorphism
• Problem: leveraging on polymorphism, write generic

method to compute total areas of a list of geometric shapes.

• Solution

public double sumAreasOfShapes(ArrayList<Shape> shapeList) {

 double sum = 0.;

 for(Shape shape: shapeList) {

 sum += shape.getArea();

 }

 return sum;

}

4/8/2024 CUNY | Brooklyn College 5

The Dilemma

• Problem: leveraging on polymorphism, write

generic method to compute total areas of a list of

geometric shapes.

• Dilemma: but can we compute a shape’s area

without knowing the specification of the shape

(e.g., type of shape, parameters of the shape)?

4/8/2024 CUNY | Brooklyn College 6

The Shape Class

• Do you like the getArea() method here?
public class Shape { …

 public double getArea() {

 throw new UnsupportedOperationException(“Expect a concrete shape to compute the area");

 }

}

• Remarks

• We know semantically that we can compute the area of a shape, and so we
design the Shape class to have a behavior to compute its area

• However, we don’t know the algorithm to compute the area without knowing
the actual shape

• The “dummy” method in the above is not only semantically undesired, but also
can easily cause runtime errors.

4/8/2024 CUNY | Brooklyn College 7

cisc3115_c14b.pdf#page=4

Abstract Method

• An abstract method has no implementation

public abstract double getArea() ;

4/8/2024 CUNY | Brooklyn College 8

Abstract Method: No

Implementation
• Let’s declare an abstract method. How about these code

snippets (which one is correct or wrong and why?)

4/8/2024 CUNY | Brooklyn College 9

abstract double getArea() ;

abstract double getArea() {}

abstract double getArea() {

}

double getArea() ;

double getArea() {}

Abstract Method: No

Implementation

• Let’s declare an abstract method. How about these

code snippets?

4/8/2024 CUNY | Brooklyn College 10

abstract double getArea() ;

abstract double getArea() {}

abstract double getArea() {

}

double getArea() ;

double getArea() {}

Abstract Class

• In Java, any class that has an abstract method must be
declared “abstract”

• Example

abstract class Shape {

 public abstract double area() ;

}

• Abstract class: a class that is declared abstract

• Abstract classes cannot be instantiated, but they can be
subclassed.

4/8/2024 CUNY | Brooklyn College 11

Class with Abstract Method

• Abstract method: a method that is declared

without an implementation

abstract void makeNoise();

• A class that has an abstract method must be

declared abstract

• How about these two code snippets?

4/8/2024 CUNY | Brooklyn College 12

class Animal {

 abstract void makeNoise();

}

abstract class Animal {

 abstract void makeNoise();

}

Class with Abstract Method

• A class that has an abstract method must be

declared abstract

4/8/2024 CUNY | Brooklyn College 13

class Animal {

 abstract void makeNoise();

}

abstract class Animal {

 abstract void makeNoise();

}

Abstract Class: Subclass &

Instantiation

• Abstract classes cannot be instantiated, but they

can be subclassed.

abstract class Shape {

 public abstract double area() ;

}

• How about these code snippets?

4/8/2024 CUNY | Brooklyn College 14

Shape s = new Shape(); class Circle extends Shape {…}

Shape s = new Circle();

Abstract Class: Subclass &

Instantiation

• Abstract classes cannot be instantiated, but they

can be subclassed.

abstract class Shape {

 public abstract double area() ;

}

• How about these code snippets?

4/8/2024 CUNY | Brooklyn College 15

Shape s = new Shape(); class Circle extends Shape {…}

Shape s = new Circle();

The Shape Class Hierarchy: Abstract

Shape

4/8/2024 CUNY | Brooklyn College 16

Shape

+ getArea(): double

Circle

+ getArea(): double

Rectangle

+ getArea(): double

In UML class diagram,
italicize names of
abstract classes and
methods

Subclass an Abstract Class

• Concrete subclass

• A subclass may provide implementations for all of the

abstract methods in its parent class.

• Abstract subclass

• The subclass must also be declared abstract if it does not

provide implementation of all of the abstract methods in

its parent class.

• The subclass may also declare abstract method itself

4/8/2024 CUNY | Brooklyn College 17

Concrete Subclass

• A subclass provides implementations of all of the

abstract methods declared in its superclass.

• An abstract method thus can have many

implementations.

4/8/2024 CUNY | Brooklyn College 18

The Shape Class Hierarchy: Concrete

Subclasses

• Abstract class Shape’s getArea method has many

implementations in the abstract class’s subclasses

4/8/2024 CUNY | Brooklyn College 19

Shape

+ getArea(): double

Circle

+ getArea(): double

Rectangle

+ getArea(): double

RightTriangle

+ getArea(): double

Concrete Subclass

• Example:

public class RightTriangle extends Shape {

 private double base;

 private double height;

 ……

 public double getArea() {

 return 0.5 * base * height;

 }

}

4/8/2024 CUNY | Brooklyn College 20

Abstract Subclass

• The subclass must also be declared abstract if it

does not provide implementation of all of the

abstract methods in its superclass.

• The subclass may also declare abstract method

itself.

4/8/2024 CUNY | Brooklyn College 21

Abstract Subclass: Extending Type

Hierarchy

• Motivation: add types to

type hierarchy to

differentiate objects of

different types

4/8/2024 CUNY | Brooklyn College 22

Shape

Triangle Rectangle Circle

RightTriangle EquilateralTriangle

+ getArea(): double

+ getArea(): double

+ getArea(): double + getArea(): double

+ getArea(): double

Abstract Subclass: Extending Type

Hierarchy
• Example:

public abstract class Triangle extends Shape {

 public Triangle(String name) {

 super(name);

 }

 public int getNumberOfSides() {

 return 3;

 }

}

• Remark:

• An abstract class must be declared abstract.

• An abstract class can have concrete methods.

• An abstract class may not have any abstract methods.

4/8/2024 CUNY | Brooklyn College 23

Abstract Subclass: Add New Abstract

Behavior

• Motivation: add new, but

“unspecified” behavior

to an abstract class

4/8/2024 CUNY | Brooklyn College 24

Shape

Triangle Rectangle Circle

RightTriangle EquilateralTriangle

+ getArea(): double

+ getArea(): double
+ isEquilateral(): boolean

+ getArea(): double + getArea(): double+ isEquilateral(): boolean

+ getArea(): double
+ isEquilateral(): boolean

Abstract Subclass: Add New Behavior

• Example:

public abstract class Triangle extends Shape {

 public Triangle(String name) {

 super(name);

 }

 public int getNumberOfSides() {

 return 3;

 }

 public abstract boolean isEquilateral();

}

4/8/2024 CUNY | Brooklyn College 25

Questions?

• Abstract class

• Abstract method

• Extending abstract class

• Concrete subclass

• Abstract subclass

• Example programs

4/8/2024 CUNY | Brooklyn College 26

Exercise 1 of 3
• In this exercise and the exercise that follows, you are to

compare the Shape class hierarchies with and without
making Shape class abstract. In this exercise, you do not
make Shape class abstract.

• Create a ConcreteShape subdirectory

• Create the following classes in the ConcreteShape directory

• Shape, Triangle, Rectangle, Circle, RightTriangle, EquilateralTriangle, and
ShapeClient classes

• These classes are of the same class hierarchy as shown in the lecture,
however, none of them are abstract class. The getArea() method is a
“dummy” method as shown in the lecture.

• In the ShapeClient class, generate a few shapes of different types, write
method of totalArea(Shape[] shapes), and invoke it compute the sum of
the areas of the shapes

4/8/2024 CUNY | Brooklyn College 27

Exercise 2 of 3

• In this exercise and the exercise that follows, you are to compare
the Shape class hierarchies with and without making Shape class
abstract. In this exercise, you do make Shape class abstract.

• Create a AbstractShape subdirectory

• Create the following classes in the AbstractShape directory

• Shape, Triangle, Rectangle, Circle, RightTriangle, EquilateralTriangle, and
ShapeClient classes

• These classes are of the same class hierarchy as shown in the lecture. Some of
these classes are abstract and the others aren’t. The Shape’s getArea() method
is an abstract method as shown in the lecture.

• In the ShapeClient class, generate a few shapes of different types, write
method of totalArea(Shape[] shapes), and invoke it compute the sum of the
areas of the shapes

• Write a comment at the top of the Shape client class to explain the benefit of
having the Shape class abstract, e.g., what kind of errors this helps prevent?

4/8/2024 CUNY | Brooklyn College 28

Exercise 3 of 3
• In this exercise, you are to realize the UML class diagram in

next slide.

• Create a directory for this exercise, create all the classes from
scratch in the UML class diagram shown in the next slide.

• Note that Animal and Feline are abstract classes

• Note that makeNoise and pounce are abstract methods. To implement the
methods in concrete subclasses, simply print out an appropriate message,
such as, “Cat purrs”, “Panther roars”, “Dove coos”, “Whale clicks”, “Cat
pounces”, “Panther pounces”, etc.

• Write a client class, called the AnimalClient class. In the client, write
three methods

• Two generic methods, one of which takes an ArrayList of Animals and
invokes each Animal’s makeNoise method, and the other of which takes an
ArrayList of Felines and invokes each Feline’s pounce method

• A main method that demonstrates the use of the two generic methods.

4/8/2024 CUNY | Brooklyn College 29

Exercise 3: The Animal Class

Hierarchy

4/8/2024 CUNY | Brooklyn College 30

Animal

Feline Dove Whale

Cat Panther

+ makeNoise(): void

+ pounce(): void + makeNoise(): void + makeNoise(): void

+ makeNoise(): void
+ pounce(): void

+ makeNoise(): void
+ pounce(): void

	Slide 1: CISC 3115 Abstract Class and Method
	Slide 2: Outline
	Slide 3: Recap: Inheritance and Polymorphism
	Slide 4: The Shape Class Hierarchy
	Slide 5: Recap: Inheritance and Polymorphism
	Slide 6: The Dilemma
	Slide 7: The Shape Class
	Slide 8: Abstract Method
	Slide 9: Abstract Method: No Implementation
	Slide 10: Abstract Method: No Implementation
	Slide 11: Abstract Class
	Slide 12: Class with Abstract Method
	Slide 13: Class with Abstract Method
	Slide 14: Abstract Class: Subclass & Instantiation
	Slide 15: Abstract Class: Subclass & Instantiation
	Slide 16: The Shape Class Hierarchy: Abstract Shape
	Slide 17: Subclass an Abstract Class
	Slide 18: Concrete Subclass
	Slide 19: The Shape Class Hierarchy: Concrete Subclasses
	Slide 20: Concrete Subclass
	Slide 21: Abstract Subclass
	Slide 22: Abstract Subclass: Extending Type Hierarchy
	Slide 23: Abstract Subclass: Extending Type Hierarchy
	Slide 24: Abstract Subclass: Add New Abstract Behavior
	Slide 25: Abstract Subclass: Add New Behavior
	Slide 26: Questions?
	Slide 27: Exercise 1 of 3
	Slide 28: Exercise 2 of 3
	Slide 29: Exercise 3 of 3
	Slide 30: Exercise 3: The Animal Class Hierarchy

