CISC 3115 EWQ6

Recursion and Strings

Hui Chen
Department of Computer \& Information Science
CUNY Brooklyn College

Outline

- Discussed
- Problem Solving using Recursion
- Recursive math functions
- Design solutions to recursive math functions using recursion
- Recursions and Strings
- Print messages n times
- Is the string a palindrome?

Characteristics of Recursion

- All recursive methods have the following characteristics:
- One or more base cases (the simplest case) are used to stop recursion.
- Every recursive call reduces the original problem, bringing it increasingly closer to a base case until it becomes that case.

Recursion as Problem Solving

Strategy

- Break the problem into subproblems such that one or more subproblems resembles the original problem
- These subproblems resembling the original problem is almost the same as the original problem in nature with a smaller size.
- Apply the same approach to solve the subproblem recursively to reach the base case

Print Message Many Times

- Problem: print a message n times.
- Can we solve it using recursion?
- Original problem: print a message n times
- Subproblems with smaller size
- print a message 1 time
- print a message ($\mathrm{n}-1$) times (the same problem as the original problem, but smaller size)
- Base case: print the message 0 times (or 1 time)

Print Message Many Times: Solution

- Base case: $\mathrm{n}=0$ (how about the $\mathrm{n}=1$ base case? Which one yields better code?)

```
public class PrintMsg {
    public static void main(String[] args) {
    nPrintMsg("Hello, World!", 5);
    }
    public static void nPrintMsg(String msg, int n) {
    if ( }\textrm{n}==0)\mathrm{ return; // base case
    System.out.println(msg); // subproblem 1
    nPrintMsg(msg, n-1); // subproblem 2
}
}
```


Problem Solving Example: Print Message Many Times: Revisit

- Wait! Can we just write a loop to print a message n times? (solving problem iteratively)
- Remarks
- However, it is sometimes easier to think recursively to solve a complex problems.
- Many problems we solve iteratively can also be solved recursively.
- Example: the palindrome problem (e.g., madam, nursesrun)

Is It a Palindrome?

- Problem: is a given string a palindrome?
- Recursive solution:
- 1) Compare the first and last character of the string. If not equal, not palindrome; 2) otherwise, repeat for the substring less the first and the last character (the same problem whose size is the original size -2)
- Base case: a single character or empty string, and the single character string or the empty string is always a palindrome.

Is It a Palindrome? Solution

- An example realization of the solution

```
public static boolean isPalindrome(String s) {
    // base case
    if (s.length() <= 1) return true;
    // subproblem 1
    if (s.charAt(0) != s.charAt(s.length()-1)) return false;
    // subproblem 2
    return isPalindrome(s.substring(1, s.length()-1));
}
```


Questions

- Characteristics of recursion
- Recursion as problem solving strategy
- String operations and recursion

