CISC 3115 EWQ6
Custom Exceptions

Hui Chen
Department of Computer & Information Science

CUNY Brooklyn College



Outline

e Discussed
* Approaches to handle errors (what-if and exceptions)
* Concept of Exception

* The Java throwable class hierarchy
* system errors, runtime exceptions, checked errors, unchecked errors

 Methods of declaring, throwing, catching exception, and rethrowing
exceptions

* Exception, call stack, stack frame, and stack trace
* Custom exceptions

* Define your own exceptions



Custom Exceptions, i.e., Defining
Your Own Exceptions?

* Before we proceed, follow the best practice

* Use the exception classes in the APl whenever possible.

* Define custom exception classes if the predefined
classes are not sufficient.



Commonly Reused Exceptions

* Use of standard exceptions are generally preferred
(Bloch, J., 2008)

lllegalArgumentException Non-null parameter value is inappropriate

NullPointerException Parameter value is null where prohibited

IllegalStateException Object state is inappropriate for method
invocation

IndexOutOfBoundsException Index parameter value is out of range

ConcurrentModificationException ~ Concurrent modification of an object has been
detected where it is prohibited

UnsupportedOperationException Object does not support method



Defining Your Own Exceptions

* Define custom exception classes if the predefined
classes are not sufficient.

* Define custom exception classes by extending
Exception or a subclass of Exception.



Recall the Throwable Class Hierarchy

Exception

Object

q—-Throwable

ClassNotFoundException

IOException

ArithmeticException

RuntimeException Q—

NullPointerException

Many more classes

IndexOutOfBoundsException

Error

LinkageError

VirtualMachineError

Many more classes

Illegal ArgumentException

Many more classes



Defining Your Own Exception:
Example

* Consider
 What type of “error” or “exceptional” behavior we are to handle?

* Which Exception/Error class we extend?
* Checked vs unchecked?
* Which subclass?
 Example

* Define an InvalidRadiusException by extending the selected
Exception/Error class (e.g., Exception)

* Define an InvalidNameException by extending the selected
Exception/Error class (e.g., Exception)



Questions?

* One can define her or his own Exception classes by
subtyping the Exception class

* When should you use it?

* How do you define it, what’s the process, and what
are the design considerations?



Exercise

* In this exercise, you are to create two custom exceptions,
InvalidRadiusException and InvalidNameException

* Create a directory in your journal

* Create the following classes
* Circle, CircleClient, InvalidRadiusException and InvalidationNameException

* InvalidRadiusException and InvalidationNameException are unchecked
exceptions

* Handle the two exceptions in the main method of the CircleClient class

* At the top of the CircleClient class, write a comment to compare and
contrast the custom exceptions here with the two checked exceptions of
the same names demonstrated in the lecture, e.g., advantages or
disadvantages of each



