
CISC 3115 TY2

The Object Superclass and

Selected Methods
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/5/2021 1CUNY | Brooklyn College

Notice

• The slides are subject to change.

10/5/2021 CUNY | Brooklyn College 2

Outline

• Discussed

• Inheritance

• Superclass/supertype, subclass/subtype

• Inheritance and constructors in Java

• Inheritance and instance methods in Java

• The Object class and its methods

• toString()

• equals and its contract

• Overriding the equals and toString methods

• The Objects utility class and its methods

10/5/2021 CUNY | Brooklyn College 3

The Object Class

• At the top of the Java class hierarchy tree is the

java.lang.Object class

• Every class in Java is descended from the

java.lang.Object class.

• Even if no inheritance is specified when a class is

defined, the superclass of the class is actually

Object.

10/5/2021 CUNY | Brooklyn College 4

 public class Circle {
 ...

}

Equivalent
public class Circle extends Object {

 ...

}

The Superclass: The Object Class

• The Object class is a superclass of all Java classes

• Every class you use or write inherits the instance

methods of the Object class

• You may override the methods with an implementation

that is specific to your class.

10/5/2021 CUNY | Brooklyn College 5

The toString() Method in Object

• The toString() method returns a string representation
of the object.

• The default implementation

public String toString() {

return getClass().getName() + "@" + Integer.toHexString(hashCode());

}

• returns a string consisting of

• a class name of which the object is an instance,

• the at sign (@), and

• a number representing this object.

10/5/2021 CUNY | Brooklyn College 6

Example: The toString() Method

• Example: try these statements

Loan loan = new Loan();

System.out.println(loan.toString());

10/5/2021 CUNY | Brooklyn College 7

Overriding the toString() Method

• The toString() method is often overridden.

10/5/2021 CUNY | Brooklyn College 8

Questions?

• The Object class and its toString() method

10/5/2021 CUNY | Brooklyn College 9

Comparing Objects

• Given two reference variables v1 and v2, you may

do comparison as follows,

• v1 == v2

• v1.equals(v2)

• where the equals method is defined in the Object

class

10/5/2021 CUNY | Brooklyn College 10

v1 == v2

• compares the references held in v1 and v2 and

determine whether they are identical.

10/5/2021 CUNY | Brooklyn College 11

Remark: The == Operator

• It is used for comparing

• two primitive data type values

• or for determining whether two objects have the same

references.

10/5/2021 CUNY | Brooklyn College 12

v1.equals(v2)

• It depends on the implementation of the equals

method

• The equals method is defined in the Object class

with the following implementation

public boolean equals(Object obj) {

return (this == obj);

}

10/5/2021 CUNY | Brooklyn College 13

http://hg.openjdk.java.net/jdk/jdk11/file/1ddf9a99e4ad/src/java.base/share/classes/java/lang/Object.java#l157

Example: Comparing Students

• Consider a Student class

public class Student {

private int studentId;

private String name;

public Student(int sid, String name) { …}

…

}

• What do think you should get?

Student s1 = new Student(100, “John Doe”);

Student s2 = new Student(100, “John Doe”);

System.out.println(s1.equals(s2));

10/5/2021 CUNY | Brooklyn College 14

Overriding the Equals Method

• We override the equals method in the Student class

public boolean equals(Object theOther) {

if (theOther instanceof Student) {

return id == ((Student)theOther).id &&
name.equals(((Student)theOther).name);

} else {

return false;

}

}

10/5/2021 CUNY | Brooklyn College 15

Am I Overriding it?

• How about this?

public boolean equals(Student theOther) {

if (student != null) {

return id == theOther.id && name.equals(theOther.name);

} else {

return false;

}

}

10/5/2021 CUNY | Brooklyn College 16

No. You Aren’t

• These are two different methods

boolean equals(Student theOther) {…}

boolean equals(Object theOther) {…}

10/5/2021 CUNY | Brooklyn College 17

Remark: The equals Method

• It is intended to test whether two objects have the

same contents, provided that the method is

overridden in a class, a subclass of Object.

• The == operator is stronger than the equals

method, in that the == operator checks whether

the two reference variables refer to exactly the

same object in the memory (the heap).

10/5/2021 CUNY | Brooklyn College 18

Enforcing the Contract

• The API documentation states,

“Note that it is generally necessary to override the

hashCode method whenever this method is overridden, so

as to maintain the general contract for the hashCode

method, which states that equal objects must have equal

hash codes.”

10/5/2021 CUNY | Brooklyn College 19

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.htmlequals(java.lang.Object)

Questions?

• Every class in Java is a descendent of the Object

class

• To compare two objects, we generally need to

override the equals method

• What is the intended difference between the ==

operator and the equals method?

• How do we properly override the equals method?

10/5/2021 CUNY | Brooklyn College 20

The Objects Utility Class

• Defines static utility methods for operating on objects,

or checking certain conditions before operation

• API documentation.

https://docs.oracle.com/en/java/javase/16/docs/api/ja

va.base/java/util/Objects.html

• Example methods

• int hash(Object… values)

• Int hashCode(Object obj)

10/5/2021 CUNY | Brooklyn College 21

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Objects.html

Exercise
• Use the class hierarchy of a few fruits in Question 11.9.3 to complete

the following tasks (most of these you have done in the past)

• Create a subdirectory/folder in today’s journal

• Done in the past

• Implement the 5 classes with a “name” data field and “toString(): String” method. The
return value of the toString() method must contain the class name, and the value of the
“name” data field, e.g.,

• Apple[name=“small red”]

• Add method “getApplePieRecipe(): String” to the Apple class.

• Add method “getOrangeJuiceRecipe(): String” to the Orange class.

• Override the equals method to every class, two fruits are equal if and only all
the data fields have identical contents. When overriding the equals method,
conform with the contract specified in the Object class.

• Write a FruitClient class to determine whether several pairs of fruits are equal

• Submit your journal (6 Java classes)

10/5/2021 CUNY | Brooklyn College 22

