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Notice

• The slides are subject to change. 
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Outline

• Discussed

• Inheritance

• Superclass/supertype, subclass/subtype

• Inheritance and constructors in Java

• Inheritance and instance methods in Java

• The Object class and its methods

• toString()

• equals and its contract

• Overriding the equals and toString methods

• The Objects utility class and its methods
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The Object Class

• At the top of the Java class hierarchy tree is the 

java.lang.Object class

• Every class in Java is descended from the 

java.lang.Object class. 

• Even if no inheritance is specified when a class is 

defined, the superclass of the class is actually

Object. 
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 public class Circle { 
  ... 

} 

     

Equivalent 
public class Circle extends Object { 

  ... 

} 

     



The Superclass: The Object Class 

• The Object class is a superclass of all Java classes

• Every class you use or write inherits the instance 

methods of the Object class

• You may override the methods with an implementation 

that is specific to your class. 
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The toString() Method in Object

• The toString() method returns a string representation 
of the object. 

• The default implementation 

public String toString() {

return getClass().getName() + "@" + Integer.toHexString(hashCode());

}

• returns a string consisting of 

• a class name of which the object is an instance, 

• the at sign (@), and 

• a number representing this object. 
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Example: The toString() Method

• Example: try these statements

Loan loan = new Loan();

System.out.println(loan.toString());
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Overriding the toString() Method

• The toString() method is often overridden. 
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Questions?

• The Object class and its toString() method
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Comparing Objects

• Given two reference variables v1 and v2, you may 

do comparison as follows,

• v1 == v2

• v1.equals(v2)

• where the equals method is defined in the Object 

class
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v1 == v2

• compares the references held in v1 and v2 and 

determine whether they are identical. 
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Remark: The == Operator

• It is used for comparing 

• two primitive data type values 

• or for determining whether two objects have the same 

references.
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v1.equals(v2)

• It depends on the implementation of the equals 

method

• The equals method is defined in the Object class 

with the following implementation

public boolean equals(Object obj) {

return (this == obj);

}
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http://hg.openjdk.java.net/jdk/jdk11/file/1ddf9a99e4ad/src/java.base/share/classes/java/lang/Object.java#l157


Example: Comparing Students

• Consider a Student class

public class Student {

private int studentId;

private String name;

public Student(int sid, String name) { …}

…

}

• What do think you should get? 

Student s1 = new Student(100, “John Doe”);

Student s2 = new Student(100, “John Doe”);

System.out.println(s1.equals(s2));
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Overriding the Equals Method

• We override the equals method in the Student class

public boolean equals(Object theOther) {

if (theOther instanceof Student) {

return id == ((Student)theOther).id && 
name.equals(((Student)theOther).name);

} else {

return false;

}

}
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Am I Overriding it? 

• How about this?

public boolean equals(Student theOther) {

if (student != null) {

return id == theOther.id && name.equals(theOther.name);

} else {

return false;

}

}
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No. You Aren’t

• These are two different methods

boolean equals(Student theOther) {…}

boolean equals(Object theOther) {…}
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Remark: The equals Method

• It is intended to test whether two objects have the 

same contents, provided that the method is 

overridden in a class, a  subclass of Object.

• The == operator is stronger than the equals 

method, in that the == operator checks whether 

the two reference variables refer to exactly the 

same object in the memory (the heap).
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Enforcing the Contract

• The API documentation states,

“Note that it is generally necessary to override the 

hashCode method whenever this method is overridden, so 

as to maintain the general contract for the hashCode

method, which states that equal objects must have equal 

hash codes.”
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https://docs.oracle.com/javase/8/docs/api/java/lang/Object.htmlequals(java.lang.Object)


Questions?

• Every class in Java is a descendent of the Object 

class

• To compare two objects, we generally need to 

override the equals method

• What is the intended difference between the == 

operator and the equals method? 

• How do we properly override the equals method? 
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The Objects Utility Class

• Defines static utility methods for operating on objects, 

or checking certain conditions before operation

• API documentation. 

https://docs.oracle.com/en/java/javase/16/docs/api/ja

va.base/java/util/Objects.html

• Example methods

• int hash(Object… values)

• Int hashCode(Object obj)
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https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/Objects.html


Exercise
• Use the class hierarchy  of a few fruits in Question 11.9.3 to complete 

the following tasks (most of these you have done in the past)

• Create a subdirectory/folder in today’s journal

• Done in the past

• Implement the 5 classes with a “name” data field and “toString(): String” method. The 
return value of the toString() method must contain the class name, and the value of the 
“name” data field, e.g., 

• Apple[name=“small red”]

• Add method “getApplePieRecipe(): String” to the Apple class. 

• Add method “getOrangeJuiceRecipe(): String” to the Orange class. 

• Override the equals method to every class, two fruits are equal if and only all 
the data fields have identical contents. When overriding the equals method, 
conform with the contract specified in the Object class.

• Write a FruitClient class to determine whether several pairs of fruits are equal

• Submit your journal (6 Java classes)
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