
CISC 3115 TY3

Exception and Text File I/O
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/27/2020 1CUNY | Brooklyn College

Outline

• Discussed

• Error and error handling

• Two approaches

• Exception

• The throwable class hierarchy

• System errors and semantics

• Runtime exceptions and semantics

• Checked errors and semantics

• Declaring, throwing, and catching exception

• Exception, call stack, stack trace, the finally clause, and rethrowing exceptions

• Custom exceptions

• Exception and simple text/character File I/O

10/27/2020 CUNY | Brooklyn College 2

Learning Objectives

• Identifying a file (to write to or to read from)

• Concept of file system path

• Path and File

• Understanding characters and text file

• Reading from and writing to text files

10/27/2020 CUNY | Brooklyn College 3

Identifying a file

• Concept of path in OS

10/27/2020 CUNY | Brooklyn College 4

File System Trees

• A file system stores and organizes files on some
form of media allowing easy retrieval

• Most file systems in use store the files in a tree (or
hierarchical) structure.

• Root node at the top

• Children are files or directories (or folders in Microsoft
Windows)

• Each directory/folder can contain files and
subdirectories

10/27/2020 CUNY | Brooklyn College 5

Path
• Identify a file by its path through the file

system tree, beginning from the root node

• A path is a “path” of the tree traversal

• Example: identify Hw1.txt

• OS X

• /home/alice/Hw1.txt

• Windows

• C:\home\alice\Hw1.txt

• Delimiter

• Windows: “\” and “/”

• Unix-like: “/”

• Current directory (.) and parent directory (..)

10/27/2020 CUNY | Brooklyn College 6

/ (OS X, Linux, Unix)
Or
C:\ (Windows)

home data

alice bob Readme.txt

Hw1.txt Hw1.txt

Relative and Absolute Path
• Absolute path

• Tree traversal must begin at the root directory

• Contains the root element and the complete directory list required to locate the
file

• Example: /home/alice/Hw1.txt or C:\home\alice\Hw1.txt

• Relative path

• Needs to be combined with another path in order to access a file.

• The another path is the “reference” (or the beginning directory of the tree
traversal), and the reference path isn’t recorded in the path.

• Example

• alice/Hw1.txt or alice\Hw1.txt, without knowing where alice is, a program cannot locate
the file

• “.” is the path representing the current working directory

• “..” is the path representing the parent of the current working directory
10/27/2020 CUNY | Brooklyn College 7

Questions?

• Concept of file system trees

• Concept of paths

• Traversal of file system trees

• Absolute path

• Relative path

10/27/2020 CUNY | Brooklyn College 8

Identifying a file using Java API

• The Path interface, Paths helper class, and Files

helper class (in the java.nio.file package)

• What is an “interface”? Treat it as a “class” for now.

• The File class (in the java.io package)

10/27/2020 CUNY | Brooklyn College 9

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Path.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Paths.html
https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html
https://docs.oracle.com/javase/8/docs/api/java/io/File.html

The File Class

• java.io.File

• It provides an abstraction that deals with most of the

machine-dependent complexities of files and path

names in a machine-independent fashion.

• It is a wrapper class for the file name and its directory

path.

• The filename and its directory path are a string.

10/27/2020 CUNY | Brooklyn College 10

The File Class: API

10/27/2020 CUNY | Brooklyn College 11

Example Problem: Explore File

Properties

• Objective

• Write a program that demonstrates how to create files

in a platform-independent way and use the methods in

the File class to obtain their properties.

• Observe the example

10/27/2020 CUNY | Brooklyn College 12

Example Problem: Explore File

Properties

10/27/2020 CUNY | Brooklyn College 13

Characters and Text File

• Also called character file.

• Each stores characters

• But what are characters

10/27/2020 CUNY | Brooklyn College 14

Characters

• Basic units to form written text

• Each language has a set of characters

• Generally, a character is a code (a binary number) in the OS

• A character can have many different glyphs (graphical

representation), provided by a font

• The 1st letter in the English Alphabet

• Character “a”: a, a, a, a, …

10/27/2020 CUNY | Brooklyn College 15

Binary
Representation

(character code)

Graphical
representation

(glyph)

Table
Lookups

Encoded Character
(shortened binary
representation)

Conver-
sion

Unicode
• A single coding scheme for written texts of the world’s languages and symbols

• Each character has a code point

• Originally 16-bit integer (0x0000 – 0xffff), extended to the range of (0x0 – 0x10ffff),
e.g., U+0000, U+0001, …, U+2F003, …, U+FF003, …, U+10FFFF

• All the codes form the Unicode code space

• Divided into planes, each plane is divided into blocks

• Basic Multilingual Plane (BMP), the 1st plane, where a language occupies one or mote
blocks

• Encoding schemes

• Express a code point in bytes: in UTF-8, use 1 to 4 bytes (grouped into code units) to
represent a code point (space saving, backward comparability with ASCII)

• Code units

10/27/2020 CUNY | Brooklyn College 16

Binary
Representation

(character code)

Graphical
representation

(glyph)

Table
Lookups

Encoded Character
(Shortened binary

representation)

Conver-
sion

Encoding Scheme: Code Point and

Code Units: Examples

• All code units are in hexadecimal.

10/27/2020 CUNY | Brooklyn College 17

Unicode code
point

U+0041 U+00DF U+6771 U+10400

Representative
glyph

A 東

UTF-32 code units 00000041 000000DF 00006771 00010400

UTF-16 code units 0041 00DF 6771 D801 DC00

UTF-8 code units 41 C3 9F E6 9D B1 F0 90 90 80

Binary
Representation

(character code)

Graphical
representation

(glyph)

Table
Lookups

Encoded Character
(shortened binary
representation)

Conver-
sion

Let’s do some exercises with Unicode

codepoints
char[][] texts = {

Character.toChars(0x00000041), // A

Character.toChars(0x000000df), // ß ; on Windows, chcp 850

Character.toChars(0x00006771), // 東 ; on windows, chcp 936

Character.toChars(0x00000414), // Д ; on windows, chcp 855

};

for (int i=0; i<texts.length; i++) {

System.out.println(new String(texts[i]));

}

10/27/2020 CUNY | Brooklyn College 18

Characters in the Java Platform

• Original design in Java

• A character is a 16-bit Unicode

• A Unicode 1.0 code point is a 16-bit integer

• Java predates Unicode 2.0 where a code point was extended to the range (0x0 – 0x10ffff).

• Example: U+0012: ‘\u0012’

• Evolved design: a character in Java represents a UTF-16 code unit

• The value of a character whose code point is no above U+FFFF is its code point,
a 2-byte integer

• The value of a character whose code point is above U+FFFF are 2 code units or 2
2-byte integers ((high surrogate: U+D800 ~ U+DBFF and low surrogate: U+DC00
to U+DFFF)

• In Low-level API: Use code point, a value of the int type (e.g., static
methods in the Character class)

10/27/2020 CUNY | Brooklyn College 19

Text File

• Also called character file

• Each stores characters

• Stores encoded binary representations of “characters”

• If we know the encoding scheme, we can correctly

render the characters in their glyphs

• What if we don’t know?

• The rest is to introduce Java Text File I/O

10/27/2020 CUNY | Brooklyn College 20

Text File I/O in Java

• The File objects contain the methods for

reading/writing data from/to a file.

• Objective: To read/write strings and numeric values

from/to a text file using the Scanner and

PrintWriter classes.

• A few other Java API classes can do text file I/O as

well, but leave them for your own exploration

10/27/2020 CUNY | Brooklyn College 21

PrintWriter

10/27/2020 CUNY | Brooklyn College 22

java.io.PrintWriter

+PrintWriter(filename: String)

+print(s: String): void

+print(c: char): void

+print(cArray: char[]): void

+print(i: int): void

+print(l: long): void

+print(f: float): void

+print(d: double): void

+print(b: boolean): void

Also contains the overloaded

println methods.

Also contains the overloaded

printf methods.

.

Creates a PrintWriter for the specified file.

Writes a string.

Writes a character.

Writes an array of character.

Writes an int value.

Writes a long value.

Writes a float value.

Writes a double value.

Writes a boolean value.

A println method acts like a print method; additionally it

prints a line separator. The line separator string is defined

by the system. It is \r\n on Windows and \n on Unix.

The printf method was introduced in §4.6, “Formatting

Console Output and Strings.”

PrintWriter::close()

• Any system resources associated with a PrintWriter

should be released

• Use the PrintWriter::close() method

10/27/2020 CUNY | Brooklyn College 23

Write Text to File: First Try

• Observe WriteText.java

• Is there any problem?

PrintWriter output = new PrintWriter(file);

// Write formatted output to the file

output.print("John T Smith "); output.println(90);

output.print("Eric K Jones "); output.println(85);

output.println(63/0);

// Close the file

output.close();

10/27/2020 CUNY | Brooklyn College 24

Write Text to File: First Try: Resources

Always Released?
• Observe WriteText.java

• Is there any problem?

PrintWriter output = new PrintWriter(file);

// Write formatted output to the file

output.print("John T Smith "); output.println(90);

output.print("Eric K Jones "); output.println(85);

output.println(63/0);

// Close the file

output.close();

10/27/2020 CUNY | Brooklyn College 25

Exception
may occur,
resulting in
the close()
method not
be called.

Write Text to File: Second Try: close()

in the finally Block
• Observe WriteText.java

• Is there any problem?

PrintWriter output = null;

try {

output = new PrintWriter(file);

// Write formatted output to the file

output.print("John T Smith "); output.println(90);

output.print("Eric K Jones "); output.println(85); output.println(63/0);

} finally {

// Close the file

output.close();

}

10/27/2020 CUNY | Brooklyn College 26

Autoclose using try-with-resources

• JDK 7 provides the followings new try-with-

resources syntax that automatically closes the files.

try (declare and create resources) {

Use the resource to process the file;

}

10/27/2020 CUNY | Brooklyn College 27

Write Text to File: Third Try: try-with-

resources

try (PrintWriter output = new PrintWriter(file)) {

// Write formatted output to the file
output.print("John T Smith ");
output.println(90);

output.print("Eric K Jones ");

output.println(85);

output.println(63/0);

}

10/27/2020 CUNY | Brooklyn College 28

Questions?

• Concept of character and text file

• Concept of file system path and file

• Writing text using File and PrintWriter

• How to handle exception?

• What are the approaches to release system resources

used by PrintWriter?

10/27/2020 CUNY | Brooklyn College 29

Reading Text Using Scanner

10/27/2020 CUNY | Brooklyn College 30

java.util.Scanner

+Scanner(source: File)

+Scanner(source: String)

+close()

+hasNext(): boolean

+next(): String

+nextByte(): byte

+nextShort(): short

+nextInt(): int

+nextLong(): long

+nextFloat(): float

+nextDouble(): double

+useDelimiter(pattern: String):

Scanner

Creates a Scanner object to read data from the specified file.

Creates a Scanner object to read data from the specified string.

Closes this scanner.

Returns true if this scanner has another token in its input.

Returns next token as a string.

Returns next token as a byte.

Returns next token as a short.

Returns next token as an int.

Returns next token as a long.

Returns next token as a float.

Returns next token as a double.

Sets this scanner’s delimiting pattern.

Example Problem and Program:

Replacing Text
• Problem:

• Write a class named ReplaceText that replaces a string in a text file
with a new string.

• The filename and strings are passed as command-line arguments as
follows:

java ReplaceText sourceFile targetFile oldString newString

• For example, invoking

java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

• replaces all the occurrences of StringBuilder by StringBuffer
in FormatString.java and saves the new file in t.txt.

10/27/2020 CUNY | Brooklyn College 31

Example Program: the Gist of

Replacing Text
try (// try-with-resource to autoclose resources

Scanner input = new Scanner(sourceFile);

PrintWriter output = new PrintWriter(targetFile);) {

while (input.hasNext()) {

String s1 = input.nextLine();

String s2 = s1.replaceAll(args[2], args[3]);

output.println(s2);

}

}

10/27/2020 CUNY | Brooklyn College 32

Questions?

• Use Scanner to read text file

10/27/2020 CUNY | Brooklyn College 33

Exercises 1

• In the ReplaceText example program, we use a try-with-
resource to release system resources associated with the
Scanner and PrintWriter objects.

• Create directories in your journal,

• Revise the class to release resources in the finally block

• In the ReplaceText example given in the slides, we declare the
main(String[] args) method to throw Exception. In this execise, you
must handle exceptions in the main method by using the catch
clause.

• However, you catch as specific types of exceptions as you can.

• Submit the work as a journal entry

10/27/2020 CUNY | Brooklyn College 34

Exercise 2
(This is based on question 12.11 in chapter 12 of the textbook.) Write a
program that removes all the occurrences of a specified string from a text
file. For example, invoking

Java RemoveText john filename.txt

removes the string john from the filename.txt file. The rest is similar to
exercise 1.

• Create directories in your journal

• Use the RemoveText example program as a start

• In previous exercise, we declare the main(String[] args) method to throw
Exception. In this program, you must handle exceptions in the main
method by using the catch clause.

However, you catch as specific types of exceptions as you can.

• Submit the work as a journal entry

10/27/2020 CUNY | Brooklyn College 35

