
CISC 3115 TY2

Inheritance
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/22/2020 1CUNY | Brooklyn College

Notice

• The slides are always subject to change.

• The slides posted before the lecture are for preview

only, and they are a draft and their content can

change significantly.

9/22/2020 CUNY | Brooklyn College 2

Outline

• Recall we discussed

• Relationship of classes (Association, Composition, and
Aggregation). They are more!

• Inheritance

• Superclass/supertype, subclass/subtype

• Inheritance and constructors in Java

• Inheritance and instance methods in Java

• The Object class in Java

9/22/2020 CUNY | Brooklyn College 3

Class and Type

• A class defines a type, and often models a set of

entities

• Example: to build a system for managing business

at Brooklyn College, we consider

• People, a set of individuals (objects), modeled as a class

that captures the essence of the set of objects

9/22/2020 CUNY | Brooklyn College 4

People at Brooklyn College

Subtypes

• Some people at Brooklyn are different from the

others in some way

• Professors and students are subtypes of Brooklyn

College People

9/22/2020 CUNY | Brooklyn College 5

People at Brooklyn College

Professors Students

Type Hierarchy

• Characteristics and behavior

• What are Students and Professors in common?

• What are Students and Professors different?

9/22/2020 CUNY | Brooklyn College 6

People at Brooklyn
College

Professors Students

What’s in Common?

• What characteristics (attributes) and behavior

(actions) do People at Brooklyn College have in

common?

• Characteristics (attributes, fields, or states): name, ID,

address, email, phone, …

• Behavior (actions, functions, or methods): change

address, apply parking, …

9/22/2020 CUNY | Brooklyn College 7

What’s Special?

• What’s distinct about students?

• Characteristics (attributes, fields, or states): classes taken,
tuition and fees, …

• Behavior (actions, functions, or methods): add class, drop
class, pay tuition, …

• What’s distinct about professors?

• Characteristics (attributes, fields, or states): course taught,
rank, title, …

• Behavior (actions, functions, or methods): register grade,
apply promotion, …

9/22/2020 CUNY | Brooklyn College 8

Inheritance & Type Hierarchy

• A subtype (child) inherits characteristics (data fields

& methods) and behavior (actions) of its

super/base type (parent)

9/22/2020 CUNY | Brooklyn College 9

People at Brooklyn
College

Professors Students

- Name, ID, address,
phone, …

- Change address,
apply parking …

- Class taken, …
- Add class, …

- Class taught, …
- Register grades, …

Terms of Choice

• Terms

• Super type, Super class

• Base type, Base class

• Parent type, parent class

• Child type, child class

• Subtype, subclass

• …

• In Java, we sometimes consider “type” and “class” are slightly different

• In Java, a pure abstract class is called an “interface” (to be discussed in the
future)

9/22/2020 CUNY | Brooklyn College 10

Example: Realizing the Type

Hierarchy

• Classes: Person, Student, Professor

9/22/2020 CUNY | Brooklyn College 11

People at Brooklyn
College

Professors Students

- Name, ID, address,
phone, …

- Change address,
apply parking …

- Class taken, …
- Add class, …

- Class taught, …
- Register grades, …

Super Type (Super Class): Person

public class Person {

private String name;

private String id;

private String address;

public Person(String name, String id, String address) {

this.name = name; this.id = id; …

}

public void changeAddress(String address) { … }

… }

9/22/2020 CUNY | Brooklyn College 12

Subtype (Subclass): Student

public class Student extends Person {

public final static int MAX_NUM_COURSES = 10;

private String[] classesTaken;

public Student(String name, String id, String address) {

...... // initializing inherited data fields

classesTaken = new String[MAX_NUM_COURSES];

}

public void haveTakenClass(String className) { … }

public void showClassesTaken() { … }

…}

9/22/2020 CUNY | Brooklyn College 13

Subtype (Subclass): Professor

public class Professor extends Person {

public final static int SABATTICAL_LEAVE_INTERVAL = 7;

private int yearStarted;

public Professor(String name, String id, String address, int yearStarted) {

...... // initializing inherited data fields

this.yearStarted = yearStarted;

}

public void applySabbatical(int applicationYear) { …

}

…}

9/22/2020 CUNY | Brooklyn College 14

Questions

• Concepts

• Type, subtype, class, subclass

• Inheritance

9/22/2020 CUNY | Brooklyn College 15

UML Diagram and Type Hierarchy

• UML diagram for

showing class

hierarchy

• Example:

GeometricObject,

Circle, Rectangle

9/22/2020 CUNY | Brooklyn College 16

GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,

filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled

values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,

filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

+printCircle(): void

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double

color: String, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

+getArea(): double

+getPerimeter(): double

Exercise (Part 1 of 3)

• Create a subdirectory/folder in today’s journal

• Complete the following,

• Implement 3 classes: Shape, Circle, and Rectangle with minimal coding (don’t
write more than asked)

• The Shape class is the superclass of the Circle and Rectangle class

• Shape objects have a name. We add the name data field to the Shape class

• We add a getName():String method to the Shape class

• Write a ShapeClient class and create a Shape, a Circle, and a Rectangle object, and print
out their names.

• Make sure you can compile your classes

• Submit the journal

• We shall do more with these classes in the same directory

9/22/2020 CUNY | Brooklyn College 17

Constructors

• Let us consider

• Circle c = new Circle();

• Are superclass’s constructor inherited?

• No. They are not inherited.

• They are invoked explicitly or implicitly.

• Explicitly using the super keyword.

9/22/2020 CUNY | Brooklyn College 18

Constructors

• Let us consider

Circle c = new Circle();

• Are superclass’s

Constructor Inherited?

• In other words, how are

the data fields

initialized?

9/22/2020 CUNY | Brooklyn College 19

GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,

filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled

values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,

filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

+printCircle(): void

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double

color: String, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

+getArea(): double

+getPerimeter(): double

Constructors in Super- and Sub-

Classes

• Are superclass’s Constructor Inherited?

• No. They are not inherited, but one is always invoked

• They are invoked explicitly or implicitly.

• Explicitly using the super keyword

• Implicitly the superclass's no-arg constructor is

automatically invoked if the keyword super is not

explicitly used.

9/22/2020 CUNY | Brooklyn College 20

Implicit Invocation of Superclass’s

Constructor

• A superclass’s constructor is always invoked even if

it isn’t invoked explicitly using super.

• Which constructor is invoked implicitly?

9/22/2020 CUNY | Brooklyn College 21

public A(double d) {

 // some statements

}

is equivalent to

public A(double d) {

 super();

 // some statements

}

public A() {

}

is equivalent to

public A() {

 super();

}

Explicit Invocation of Superclass’s

Methods

• super refers to the superclass

• Use it

• To call a superclass constructor

• Java requires that the statement that uses the keyword super

appear first in the constructor.

• To call a superclass method

9/22/2020 CUNY | Brooklyn College 22

Constructor Chaining

• Invocation of superclass’s constructor (along the

inheritance chain)

• Example

• Consider classes: Person, Employee, Faculty

9/22/2020 CUNY | Brooklyn College 23

Person

Employee

Faculty

Constructor Chaining: Example

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

class Employee(String s) {

System.out.println(s);

}

}

class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is
invoked");

}

}

9/22/2020 CUNY | Brooklyn College 24

Discussion: No-Arg Constructor

• Is there an error in the code below, and why?

public class Apple extends Fruit {

}

public class Fruit {

public Fruit(String name) {

System.out.println("Fruit's constructor is invoked");

}

}

9/22/2020 CUNY | Brooklyn College 25

Questions?

• Constructors in superclass

• Explicit and implicit invocation

• Constructor chaining

9/22/2020 CUNY | Brooklyn College 26

Exercise (Part 2 of 3)
• We continue to work on the share classes (Shape, Circle, Rectangle)

• Add the following,

• Add a default constructor in each of the 3 classes

• In each constructor, write a statement to print out something like,

• “In the default constructor of ______ class.” (fill the blank with right class name)

• Add the instance variable radius to the Circle class, and width and length to the
Rectangle class

• Add parameterized constructors in the Circle and Rectangle class.

• Initialize the instance variables from the parameters

• Write a statement to print out something like, “In the constructor _____ of ______ class”.

• Revise the ShapeClient to call the parameterized constructors instead.

• Make sure your program compiles and runs

• Submit the journal

9/22/2020 CUNY | Brooklyn College 27

Defining a Subclass

• A subclass inherits from a superclass.

• One can also:

• Add new properties

• Add new methods

• Override the methods of the superclass

9/22/2020 CUNY | Brooklyn College 28

Overriding Methods in Superclass

• Modify the implementation of a method defined in the
superclass

public class Circle extends GeometricObject {

// Other methods are omitted

/** Override the toString method defined in GeometricObject */

public String toString() {

return super.toString() + "\nradius is " + radius;

}

}

9/22/2020 CUNY | Brooklyn College 29

Invoking Superclass’s Instance

Method

• Example

• One could rewrite the printCircle() method in the Circle

class as follows:

public void printCircle() {

System.out.println("The circle is created " +

super.getDateCreated() + " and the radius is " + radius);

}

9/22/2020 CUNY | Brooklyn College 30

Discussion: Method Overriding

• Can you override a private method in the

superclass?

9/22/2020 CUNY | Brooklyn College 31

Discussion: Method Overriding

• Can you override a private method in the superclass?

• No

• An instance method can be overridden only if it is
accessible.

• A private method is not accessible outside its own class.

• A private method in the superclass can only be accessible in
the superclass itself, is inaccessible in the subclass.

• Thus a private method cannot be overridden.

9/22/2020 CUNY | Brooklyn College 32

Discussion: Unrelated Methods

• Can you have a method whose signature is identical

to a private method in the superclass?

9/22/2020 CUNY | Brooklyn College 33

Discussion: Unrelated Methods

• Can you have a method whose signature is identical

to a private method in the superclass?

• Yes

• However, this isn’t method overriding. The two

methods are unrelated, but happen to have the

identical name.

9/22/2020 CUNY | Brooklyn College 34

Discussion: Static Method

• Like an instance method, a static method can be

inherited.

• However, a static method cannot be overridden.

• If a static method defined in the superclass is

redefined in a subclass, the method defined in the

superclass is hidden.

9/22/2020 CUNY | Brooklyn College 35

Overriding vs. Overloading

• Overriding is to redefine the method with the

identical signature in the superclass

9/22/2020 CUNY | Brooklyn College 36

 public class Test {

 public static void main(String[] args) {

 A a = new A();

 a.p(10);

 a.p(10.0);

 }

}

class B {

 public void p(double i) {

 System.out.println(i * 2);

 }

}

class A extends B {

 // This method overrides the method in B

 public void p(double i) {

 System.out.println(i);

 }

}

public class Test {

 public static void main(String[] args) {

 A a = new A();

 a.p(10);

 a.p(10.0);

 }

}

class B {

 public void p(double i) {

 System.out.println(i * 2);

 }

}

class A extends B {

 // This method overloads the method in B

 public void p(int i) {

 System.out.println(i);

 }

}

Two methods with identical name but different signature

Questions?

• Defining subclasses

• A few topics

• Invoking superclass’s methods (constructors and

instance methods)

• Overriding

• Overriding and overloading

9/22/2020 CUNY | Brooklyn College 37

Exercise (Part 3 of 3)
• We continue to work on the share classes (Shape, Circle,

Rectangle)

• Add the following,

• Add a getArea():double method to the Circle and Rectangle class

• Override getName():String method in the Circle and Rectangle class
to include the instance variables and their values, e.g.,, returning
something like,

• Rectangle[width=“10.0”, length=“5.0”]

• In the ShapeClient class, make you called getName() and getArea()
methods on each Circle and Rectangle object you create

• Make sure your program compiles and runs

• Submit the journal

9/22/2020 CUNY | Brooklyn College 38

(Optional) Exercise

• Listings 11.1 - 11.3 in the textbook define 3 classes: GeometricObject,
Circle, and Rectangle.

• In this exercise you are to add two classes to the hierarchy, Triangle and
EquilateralTriangle, and write a client class to use the Triangle and
EquilateralTriangle classes.

• Create an appropriate directory in the journal

• The Triangle class is a subclass to GeometricObject, and the EquilateralTriangle
isa subclass to Triangle. An EquilateralTriangle is a triangles whose sides are
equal.

• Your submission should include 6 files (6 classes): GeometricObject.java,
Circle.java, Rectangle.java, Triangle.java, EquilateralTriangle, and
TriangleClient.java

• Submit the journal

9/22/2020 CUNY | Brooklyn College 39

