CISC 3120
C30c: Model-View-Controller

and Writing Larger JavaFX
Apps

Hui Chen
Department of Computer & Information Science

CUNY Brooklyn College

Outline

* Model-View-Controller pattern

* Writing larger JavaFX application

Applications: Data and View

« Many computer systems are to display data and update data in a data
store
« Two sets of terms

* Business logic: the modeling of the application domain (model, dataq,
business logic)

« User interfaces: the visual feedback to the users (view, presentation)

12/6/2018 CUNY | Brooklyn College

Need to Separate Concerns

 User interfaces often changes more frequently than business
logic

* Applications may display the same set of data differently

« User interface design and application logic design require
different skill sets

« User interface design and user interface development are two
different concepts

 User interface code tends to be more device-dependent than
business logic

 Create automatic tests for user interfaces is generally more
difficult and time-consuming than business logic

Model-View-Controller

e . Controller
Q 1
Model :
\/
A
e . View

12/6/2018 CUNY | Brooklyn College

Model-View-Controller

* It separates an application three separated
components/classes,

* (Model) the modeling of the application domain

* (View) the presentation,

* (Controller) and the actions based on user input
* A fundamental design pattern for the

separation of user interface from business
logic.

Model

* Model is independent of view and controller

» Manages the behavior and data of the
application domain

* Responds to requests for information about
its state (usually from the view)

* Responds to instructions to change state
(usually from the controller).

View

* Depends on model, but is independent of the
controller

* Manages the display of information.

Controller

 Depends on both model and view

* Interprets the mouse and keyboard inputs
from the user

» Inform the model and/or the view to change
as appropriate.

MVC Models

 Passive model
* Active model

Passive MVC Model

* One controller manipulates the model exclusively

« updates the model (data)

« inform the view that the model has changed and request
the view to refresh

handleEvent()
notifyUpdate() U R I

| ‘ getData()
B U __________ data . ,

12/6/2018 CUNY | Brooklyn College | 11

service()

Passive MVC Model: Discussion

* Model is passive
* Model is completely independent of View and Controller
* Model does not notify View or Controller any changes on it

* Controller is responsible for updating model, and for
requesting view to refresh

 Often realized via dependency injection
* Limitation

* If model can be updated from multiple controllers, the
view may be out-of-date

Active MVC Model

 Tntroduce an observer

__

e Controller
y \/ .
«interface>>
Model RN Observer :
+update() ¥
0 /\
] View

__

12/6/2018 CUNY | Brooklyn College

13

Model and View Interaction

 Separation of concerns: code/logic are
separated, but the objects interact

handleEvent() |

notifyObservers()
— |
< update() update() o
getData()
service() ‘ U‘--__-_______Sj_‘—‘ffg _____________ N

12/6/2018 CUNY | Brooklyn College

Active MVC Model Discussion

« Model is active
* Model may change state without controller's involvement
* eg., in particular, when two or more sources may result in model update
« How do we separate model from view when model is active?
* Model updates view

* Realized via the Observer pattern
* Model is an observable that notifies view or controller that is an observer
« The model never requires specific information about any views

+ Controller or model implements the Observer whenever necessary

* Also called: the publish-subscribe pattern

Publish-Subscribe Pattern

» Subject: a subset of Observables in the
model

» Subscriber: a subject’'s observer

* In an application that has multiple views, we
often have multiple subjects

» Each describe a specify type of model change

* Each view can then subscribe only types of
changes that are relevant to the view

Realizing MVC: Passive Model

* Three (categories) of classes
« Controller class

 Model class

* View class

CoTTTTTTITTT Controller
\I/ 1
Model .
\/
)
Tmmmmmee View

12/6/2018 CUNY | Brooklyn College

17

Passive MVC: Dependency
Injection

 Interpret dependency as association
* Model class is independent completely

* No reference to either the Controller or the View class at
all

* View depends on Model

 The View class has instance variable that references to
Model

* Controller depends on both View and Model

« The Controller class has instance variables that reference
to the Model and the View, respectively

Passive MVC: Dependency
Injection

Interpret dependency as a weaker dependency relationship than the
association

Model class is independently completely

* No reference to either the Controller or the View class at all

View depends on Model
« The View class may not have instance variable that references to Model

« A method of View has a parameter of the Model type (e.g., getData(Model m))

Controller depends on both View and Model

« The Controller class may not have instance variables that reference to either
the Model or the View.

* It has methods that requires parameters of either the Model or the View
type, e.g., service(Model m), notifyUpdate(View v).

Active MVC: Publish-Subscribe

« Three (types) of classes: Model, View, and Controller

* Model has instance variables to observables (so the Model is
related to the Observer, via the platform)

« View and controller implements the Observer interface

i mmm o Controller
v \/
«interface>> I
Model - - > Observer :'
+update() \/
/N /\
i I — View

12/6/2018 CUNY | Brooklyn College 20

Active MVC: Publish-Subscribe

« Observer pattern via JavaFX Properties
* Model

* Has instance variables references to subjects (JavaFX
properties, or classes that wrap JavaFX properties)

* View and Controller

 Has event listener either as instance method parameter or
instance variables to listen to changes in Model

e Controller

* Has references to model either as instance method
parameter or instance variables (for update model)

Questions?

* How do we structure a GUT application? Is
there a pattern to follow?

Write Larger JavaFX

Applications
* Now, ready to engage in writing slightly
larger applications in JavaFX
A few essential concepts
« Window & node coordinates, colors

« Use JavaFX build-in user interface
components

* Design user interface and example
application

Color Space

* Color is a human perception
* (Mathematical) models for color are developed

* Including a model for human perceptual color space

« Examples
* Machine first
« Additive: Red-Green-Blue (RGB)
* Subtractive: Cyan-Magenta-Yellow-Black/Key (CMYK)
* Human first
* Hue-Saturation-Brightness (HSB)
* Processing first

* LAB (Luminance and a & b color channels)

Standard Red-Green-Blue
(sRGB)

* Red, Green, Blue -,
- 0.-1.

* Alpha (fransparency or
opacity)

« 00-100r0-255;1.0r
255

* 0. or O: completely opaque

* 1. or 1: completely
transparent

12/6/2018 CUNY | Brooklyn College 25

Hue-Saturation-Brightness
(HSB)

Hue:
« 0.-360.

* Saturation:

- 0.-1.
* Brightness (or Value): S
. 0.-1, s
« Alpha (transparency or
opacity)

« 00-100r0-255;1 0or 255
« 0. or 0: completely opaque

« 1. or 1: completely transparent

12/6/2018 CUNY | Brooklyn College 26

Color and Static Factory
Method

» A static method that returns an instance of
the class

« Examples:

 static Color hsb(double hue, double saturation, double
brightness, double opacity)

« static Color rgb(int red, int green, int blue, double
opacity)

* In your application design: advantage and
disadvantage?

Blocking and Non-Blocking

* The show() method of a Stage object does
hot block the caller and returns
“immediately”.

* The showAndWait() method of a Stage
object shows the stage and waits for it to
be hidden (closed) before returning to the
caller.

* Cannot be called on the primary stage

Questions?

« Window coordinate system
* Blocking and non-blocking behaviors

» Color and color spaces

User Interface Components

* Layouts

* UI controls

« Text

* Canvas and Shapes

* Images

* Charts

* HTML content & embedded web browser
* Groups

Use Build-in UT Controls and
Layouts

* Layout containers: prebuilt layouts for UL
controls and more

» UI controls: prebuilt user interface controls

» Use texts

» Use 2D graphics

 Handle user interactions with simple event
handlers

Layout Containers (Panes)

* Packaged in javafx.scene.layout

« Arrangements of the UI controls within a scene graph

* Provide the following common layout models

« BorderPane
« HBox

« VBox

« StackPane

e GridPane
* FlowPane
e TilePane

* AnchorPane

UTI Controls

* Packaged in javafx.scene.control

* Label

* Button

* Radio Button

« Toggle Button
* Checkbox

* Choice Box

« Text Field

+ Password Field
« Scroll Bar

« Scroll Pane

List View

Table View

Tree View

Tree Table View
ComboBox
Separator

Slider

Progress Bar
Progress Indicator

Hyperlink

Tooltip

HTML Editor
Titled Pane
Accordion

Menu

Color Picker

Date Picker
Pagination Control

File Chooser

12/6/2018

A Gallery of Selected
Controls

» Node 1

Yellow

¥ Node 2
~ ;, ' «Orange .=I I Hiperlink
ring —
» Node 3 | Blue Button

Accordion Check Boxes Color Button Graphic Button Hyperink

Row 1

| Row 2

lOPqus v | Row 1l Row 2 L

Long Row 3

Radio Buttons Toggle Button Horizontal List View Simple List View

First

Jacob

Isabella

Ethan

Progress Bar Progress Indicator

Simple
Label

Child Node 1

Some text ‘ Child Node 2

Graphic

Label

Advanced Label Text Feld Tool Bar

CUNY | Brooklyn College

34

Text

* Packaged in javafx.scene.text.Text

e | Text class inherits from the Shape class, and

~ the Shape class inherits from the Node class

* You can apply effects, animation, and transformations

Shape to text nodes in the same way as to any other Nodes.

/\ * you can set a stroke or apply a fill setting to text
nodes in the same way as to any other Shapes.

Text

2-D Graphics

* Draw images on Canvas
* Canvas

- javafx.scene.canvas.Canvas

 Using a set of graphics commands provided
by a GraphicsContext.

 GraphicsContext

» javafx.scene.canvas.GraphicsContext

Canvas canvas = new Canvas(WIDTH, HEIGHT);
GraphicsContext gc = canvas.getGraphicsContext2D();

Use Build-in UT Controls and
Layouts: Example

» Write a JavaFX application with build-in UT
controls and layouts

UI Design: Main Scene

* Perhaps, sketch on a piece of paper

Canvas
T winlbrash [hickness
Fatbrash Color

y 2
177100%
12/6/2018 CUNY | Brooklyn College

VBox

38

UI Design: Brush Thickness

* Perhaps, sketch on a piece of paper

—[%

12/6/2018 CUNY | Brooklyn College

39

Questions?

« JavaFX build-in components
« UI controls
« Text
* Layouts
 UT design

 What available in JavaFX?

» Sample applications for exploring JavaFX
features

