
CISC 3120

C30c: Model-View-Controller
and Writing Larger JavaFX

Apps
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

12/6/2018 1CUNY | Brooklyn College

Outline

• Model-View-Controller pattern

• Writing larger JavaFX application

12/6/2018 CUNY | Brooklyn College 2

Applications: Data and View

• Many computer systems are to display data and update data in a data
store

• Two sets of terms

• Business logic: the modeling of the application domain (model, data,
business logic)

• User interfaces: the visual feedback to the users (view, presentation)

12/6/2018 CUNY | Brooklyn College 3

retrieve

update

Need to Separate Concerns

• User interfaces often changes more frequently than business
logic

• Applications may display the same set of data differently

• User interface design and application logic design require
different skill sets

• User interface design and user interface development are two
different concepts

• User interface code tends to be more device-dependent than
business logic

• Create automatic tests for user interfaces is generally more
difficult and time-consuming than business logic

12/6/2018 CUNY | Brooklyn College 4

Model-View-Controller

12/6/2018 CUNY | Brooklyn College 5

Model

Controller

View

Model-View-Controller

• It separates an application three separated
components/classes,

• (Model) the modeling of the application domain

• (View) the presentation,

• (Controller) and the actions based on user input

• A fundamental design pattern for the
separation of user interface from business
logic.

12/6/2018 CUNY | Brooklyn College 6

Model

• Model is independent of view and controller

• Manages the behavior and data of the
application domain

• Responds to requests for information about
its state (usually from the view)

• Responds to instructions to change state
(usually from the controller).

12/6/2018 CUNY | Brooklyn College 7

View

• Depends on model, but is independent of the
controller

• Manages the display of information.

12/6/2018 CUNY | Brooklyn College 8

Controller

• Depends on both model and view

• Interprets the mouse and keyboard inputs
from the user

• Inform the model and/or the view to change
as appropriate.

12/6/2018 CUNY | Brooklyn College 9

MVC Models

• Passive model

• Active model

12/6/2018 CUNY | Brooklyn College 10

Passive MVC Model

• One controller manipulates the model exclusively

• updates the model (data)

• inform the view that the model has changed and request
the view to refresh

12/6/2018 CUNY | Brooklyn College 11

:Controller :Model :View

handleEvent()
service()

getData()

notifyUpdate()

data

Passive MVC Model: Discussion

• Model is passive

• Model is completely independent of View and Controller

• Model does not notify View or Controller any changes on it

• Controller is responsible for updating model, and for
requesting view to refresh

• Often realized via dependency injection

• Limitation

• If model can be updated from multiple controllers, the
view may be out-of-date

12/6/2018 CUNY | Brooklyn College 12

Active MVC Model

• Introduce an observer

12/6/2018 CUNY | Brooklyn College 13

Model

Controller

View

<<interface>>
Observer

+update()

Model and View Interaction

• Separation of concerns: code/logic are
separated, but the objects interact

12/6/2018 CUNY | Brooklyn College 14

:Model :View

handleEvent()

getData()

service()
data

notifyObservers()

update()

:Controller

update()

Active MVC Model Discussion

• Model is active

• Model may change state without controller’s involvement

• e.g., in particular, when two or more sources may result in model update

• How do we separate model from view when model is active?

• Model updates view

• Realized via the Observer pattern

• Model is an observable that notifies view or controller that is an observer

• The model never requires specific information about any views

• Controller or model implements the Observer whenever necessary

• Also called: the publish-subscribe pattern

12/6/2018 CUNY | Brooklyn College 15

Publish-Subscribe Pattern

• Subject: a subset of Observables in the
model

• Subscriber: a subject’s observer

• In an application that has multiple views, we
often have multiple subjects

• Each describe a specify type of model change

• Each view can then subscribe only types of
changes that are relevant to the view

12/6/2018 CUNY | Brooklyn College 16

Realizing MVC: Passive Model

• Three (categories) of classes

• Controller class

• Model class

• View class

12/6/2018 CUNY | Brooklyn College 17

Model

Controller

View

Passive MVC: Dependency
Injection
• Interpret dependency as association

• Model class is independent completely

• No reference to either the Controller or the View class at
all

• View depends on Model

• The View class has instance variable that references to
Model

• Controller depends on both View and Model

• The Controller class has instance variables that reference
to the Model and the View, respectively

12/6/2018 CUNY | Brooklyn College 18

Passive MVC: Dependency
Injection
• Interpret dependency as a weaker dependency relationship than the

association

• Model class is independently completely

• No reference to either the Controller or the View class at all

• View depends on Model

• The View class may not have instance variable that references to Model

• A method of View has a parameter of the Model type (e.g., getData(Model m))

• Controller depends on both View and Model

• The Controller class may not have instance variables that reference to either
the Model or the View.

• It has methods that requires parameters of either the Model or the View
type, e.g., service(Model m), notifyUpdate(View v).

12/6/2018 CUNY | Brooklyn College 19

Active MVC: Publish-Subscribe

• Three (types) of classes: Model, View, and Controller

• Model has instance variables to observables (so the Model is
related to the Observer, via the platform)

• View and controller implements the Observer interface

12/6/2018 CUNY | Brooklyn College 20

Model

Controller

View

<<interface>>
Observer

+update()

Active MVC: Publish-Subscribe

• Observer pattern via JavaFX Properties

• Model

• Has instance variables references to subjects (JavaFX
properties, or classes that wrap JavaFX properties)

• View and Controller

• Has event listener either as instance method parameter or
instance variables to listen to changes in Model

• Controller

• Has references to model either as instance method
parameter or instance variables (for update model)

12/6/2018 CUNY | Brooklyn College 21

Questions?

• How do we structure a GUI application? Is
there a pattern to follow?

12/6/2018 CUNY | Brooklyn College 22

Write Larger JavaFX
Applications

• Now, ready to engage in writing slightly
larger applications in JavaFX

• A few essential concepts

• Window & node coordinates, colors

• Use JavaFX build-in user interface
components

• Design user interface and example
application

12/6/2018 CUNY | Brooklyn College 23

Color Space

• Color is a human perception

• (Mathematical) models for color are developed

• Including a model for human perceptual color space

• Examples

• Machine first

• Additive: Red-Green-Blue (RGB)

• Subtractive: Cyan-Magenta-Yellow-Black/Key (CMYK)

• Human first

• Hue-Saturation-Brightness (HSB)

• Processing first

• LAB (Luminance and a & b color channels)

12/6/2018 CUNY | Brooklyn College 24

Standard Red-Green-Blue
(sRGB)

• Red, Green, Blue

• 0. – 1.

• Alpha (transparency or
opacity)

• 0.0 – 1.0 or 0 – 255; 1. or
255

• 0. or 0: completely opaque

• 1. or 1: completely
transparent

12/6/2018 CUNY | Brooklyn College 25

Hue-Saturation-Brightness
(HSB)
• Hue:

• 0. – 360.

• Saturation:

• 0. – 1.

• Brightness (or Value):

• 0. – 1.

• Alpha (transparency or
opacity)

• 0.0 – 1.0 or 0 – 255; 1. or 255

• 0. or 0: completely opaque

• 1. or 1: completely transparent

12/6/2018 CUNY | Brooklyn College 26

Color and Static Factory
Method

• A static method that returns an instance of
the class

• Examples:

• static Color hsb(double hue, double saturation, double
brightness, double opacity)

• static Color rgb(int red, int green, int blue, double
opacity)

• In your application design: advantage and
disadvantage?

12/6/2018 CUNY | Brooklyn College 27

Blocking and Non-Blocking

• The show() method of a Stage object does
not block the caller and returns
“immediately”.

• The showAndWait() method of a Stage
object shows the stage and waits for it to
be hidden (closed) before returning to the
caller.

• Cannot be called on the primary stage

12/6/2018 CUNY | Brooklyn College 28

Questions?

• Window coordinate system

• Blocking and non-blocking behaviors

• Color and color spaces

12/6/2018 CUNY | Brooklyn College 29

User Interface Components

• Layouts

• UI controls

• Text

• Canvas and Shapes

• Images

• Charts

• HTML content & embedded web browser

• Groups

12/6/2018 CUNY | Brooklyn College 30

Use Build-in UI Controls and
Layouts

• Layout containers: prebuilt layouts for UI
controls and more

• UI controls: prebuilt user interface controls

• Use texts

• Use 2D graphics

• Handle user interactions with simple event
handlers

12/6/2018 CUNY | Brooklyn College 31

Layout Containers (Panes)

• Packaged in javafx.scene.layout

• Arrangements of the UI controls within a scene graph

• Provide the following common layout models

12/6/2018 CUNY | Brooklyn College 32

• BorderPane

• HBox

• VBox

• StackPane

• GridPane

• FlowPane

• TilePane

• AnchorPane

UI Controls

• Packaged in javafx.scene.control

12/6/2018 CUNY | Brooklyn College 33

• Label

• Button

• Radio Button

• Toggle Button

• Checkbox

• Choice Box

• Text Field

• Password Field

• Scroll Bar

• Scroll Pane

• List View

• Table View

• Tree View

• Tree Table View

• ComboBox

• Separator

• Slider

• Progress Bar

• Progress Indicator

• Hyperlink

• Tooltip

• HTML Editor

• Titled Pane

• Accordion

• Menu

• Color Picker

• Date Picker

• Pagination Control

• File Chooser

A Gallery of Selected UI
Controls

12/6/2018 CUNY | Brooklyn College 34

Text

• Packaged in javafx.scene.text.Text

• Text class inherits from the Shape class, and
the Shape class inherits from the Node class

• You can apply effects, animation, and transformations
to text nodes in the same way as to any other Nodes.

• you can set a stroke or apply a fill setting to text
nodes in the same way as to any other Shapes.

12/6/2018 CUNY | Brooklyn College 35

Text

Shape

Node

2-D Graphics

• Draw images on Canvas

• Canvas

• javafx.scene.canvas.Canvas

• Using a set of graphics commands provided
by a GraphicsContext.

• GraphicsContext

• javafx.scene.canvas.GraphicsContext

12/6/2018 CUNY | Brooklyn College 36

Canvas canvas = new Canvas(WIDTH, HEIGHT);
GraphicsContext gc = canvas.getGraphicsContext2D();

Use Build-in UI Controls and
Layouts: Example

• Write a JavaFX application with build-in UI
controls and layouts

12/6/2018 CUNY | Brooklyn College 37

UI Design: Main Scene

• Perhaps, sketch on a piece of paper

12/6/2018 CUNY | Brooklyn College 38

Paintbrush Thickness

Paintbrush Color

Canvas

VBox

HBox

UI Design: Brush Thickness

• Perhaps, sketch on a piece of paper

12/6/2018 CUNY | Brooklyn College 39

10

Questions?

• JavaFX build-in components

• UI controls

• Text

• Layouts

• UI design

• What available in JavaFX?

• Sample applications for exploring JavaFX
features

12/6/2018 CUNY | Brooklyn College 40

