
CISC 3115 TY3

C28b: Map
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

11/29/2018 1CUNY | Brooklyn College



Outline

• Discussed

• Concept of data structure

• Use data structures

• List

• Stack

• Queue and priority queue

• To discuss

• Set and map

11/15/2018 CUNY | Brooklyn College 2



Outline of This Lecture

• Concept of the Map data structure

• Map in Java

• Map, HashMap, LinkedHashMap, and 
TreeMap

• Examples

11/15/2018 CUNY | Brooklyn College 3



Motivation

• In many applications, we want to find an element in 
collection

• Students enrolled in a class. Find a student given her or 
his name

• Passengers on board an airplane. Find a passenger given 
her or his seat no. 

• How may we do it? 

• Sequential search. Inefficient, if we do it a lot

• Sort and binary search. Great, just remember to sort. 

• Use a map

11/29/2018 CUNY | Brooklyn College 4



The Map Data Structure

• A map maps keys to values. 

• A map cannot contain duplicate keys.

• Each key can map to at most one value.

• Note: if we remove this constraint, i.e., a key can map to 
more than one value, we call it a multi-set.

• Compare to List

• In a list, the indexes are integer. It is like map an integer 
to the object at the index

• In a map, it is like that indexes can be any data type. It 
maps an object to another. 

• Example: a student’s name → a Student

11/29/2018 CUNY | Brooklyn College 5



Map and List

11/29/2018 CUNY | Brooklyn College 6



Map Interface and Type 
Hierarchy
• Map: a group of objects, each of which is 

associated with a key. 

• Must use a key to get the object from a map

• Must use a key to put the object into the 
map

11/29/2018 CUNY | Brooklyn College 7



Map Interface in Java

11/29/2018 CUNY | Brooklyn College 8



11/29/2018 CUNY | Brooklyn College 9

Map Interface and 
Concrete Subclasses



Entry Interface

11/29/2018 CUNY | Brooklyn College 10



HashMap and TreeMap

• Two concrete implementations of the Map 
interface. 

• The HashMap class is efficient for locating 
a value, inserting a mapping, and deleting a 
mapping. 

• The TreeMap class, implementing 
SortedMap, is efficient for traversing the 
keys in a sorted order

11/29/2018 CUNY | Brooklyn College 11



LinkedHashMap

• It extends HashMap with a linked list implementation that 
supports an ordering of the entries in the map. T

• The entries in a HashMap are not ordered, but the entries in a 
LinkedHashMap can be retrieved in either insertion order or 
the access order

• Insertion order: the order in which they were inserted into 
the map

• The no-arg constructor constructs a LinkedHashMap with the 
insertion order.

• Access order: the order in which they were last accessed, 
from least recently accessed to most recently. 

• To construct a LinkedHashMap with the access order, use the 
LinkedHashMap(initialCapacity, loadFactor, true)

11/29/2018 CUNY | Brooklyn College 12



HashMap and TreeMap: Example 
1
• This example creates a hash map that maps 

borrowers to mortgages. 

• The program first creates a hash map with 
the borrower’s name as its key and mortgage 
as its value. 

• The program then creates a tree map from 
the hash map, and displays the mappings in 
ascending order of the keys

11/29/2018 CUNY | Brooklyn College 13



HashMap and TreeMap: Example 
2
• Write an application counts the occurrences of 

words in a text and displays the words and their 
occurrences in ascending order of the words.

• The program uses a hash map to store a pair 
consisting of a word and its count. 

• For each word, check whether it is already a key in 
the map. If not, add the key and value 1 to the map. 
Otherwise, increase the value for the word (key) by 1 
in the map. 

• To sort the map, convert it to a tree map.

11/29/2018 CUNY | Brooklyn College 14



Questions?

• Map, HashMap, TreeMap

11/29/2018 CUNY | Brooklyn College 15


