
CISC 3115 TY3

C23b: Generics: Raw Type
and Wildcards

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

11/13/2018 1CUNY | Brooklyn College

Outline

11/13/2018 CUNY | Brooklyn College 2

• Discussed

• Motivation of generics

• Define generic classes and methods

• Bounded generic type

• To discuss

• Raw types

• Wildcards

• Erasures and restrictions

Raw type

• A generic class or interface used without
specifying a concrete type for a type
parameter.

• What is it for?

• Generics was introduced to Java since JDK 1.5.
How about the code written before then?

• Raw types provides backward compatibility

11/13/2018 CUNY | Brooklyn College 3

Raw Type: Example

// raw type

ArrayList list = new ArrayList();

Comparable o1 = new ComparableRectangle();

11/13/2018 CUNY | Brooklyn College 4

Raw Type is Unsafe

• Why? See the following example. Does it compile? What happens
when we run it?

// Max.java: Find a maximum object

public class Max {

/** Return the maximum between two objects */

public static Comparable max(Comparable o1, Comparable o2) {

if (o1.compareTo(o2) > 0)

return o1;

else

return o2;

}

}

11/13/2018 CUNY | Brooklyn College 5

Raw Type is Unsafe

• What happens?

Max.max("Welcome", 23);

11/13/2018 CUNY | Brooklyn College 6

Can We Make it Safe?

• Revise it to use a concrete type:

// Max1.java: Find a maximum object

public class Max1 {

/** Return the maximum between two objects */

public static <E extends Comparable<E>> E max(E o1, E o2) {

if (o1.compareTo(o2) > 0)

return o1;

else

return o2;

}

}

11/13/2018 CUNY | Brooklyn College 7

Make it Safe

• How about now? What happens when we
compile the code?

Max.max("Welcome", 23);

11/13/2018 CUNY | Brooklyn College 8

Best Practice: Avoiding Unsafe
Raw Types
• Use

new ArrayList<ConcreteType>()

instead of

new ArrayList();

11/13/2018 CUNY | Brooklyn College 9

Questions?

• Raw type? What is it?

• Should we use raw types? What is the
recommended practice?

11/13/2018 CUNY | Brooklyn College 10

Wildcards

• Why wildcards are necessary? See this example.

? unbounded wildcard

• Equivalent to ? extends Object

• Object or a subtype of Object

? extends T bounded wildcard

• T or a subtype of T

? super T lower bound wildcard

• T or a supertype of T

11/13/2018 CUNY | Brooklyn College 11

Generic Types and Wildcard
Types
• They forms a hierarchy: A and B are data

types (classes or interfaces), E is a generic
type

11/13/2018 CUNY | Brooklyn College 12

A<B’s superclass>

Questions?

• Concept of wildcard types

• Have you seen them?

11/13/2018 CUNY | Brooklyn College 13

Erasure and Restrictions on
Generics
• Generics are implemented using an approach

called type erasure, that is,

• The compiler uses the generic type information
to compile the code, but erases it afterwards.

• So the generic information is not available at run
time.

• This approach enables the generic code to be
backward-compatible with the legacy code that
uses raw types.

11/13/2018 CUNY | Brooklyn College 14

Generics: Compile Time
Checking
• Example

• The compiler checks whether generics is used
correctly for the following code

• And translates it into the equivalent code below
for runtime use. The code uses the raw type.

11/13/2018 CUNY | Brooklyn College 15

ArrayList<String> list = new ArrayList<>();

list.add("Oklahoma");

String state = list.get(0);

(a) (b)

ArrayList list = new ArrayList();

list.add("Oklahoma");

String state = (String)(list.get(0));

Important Facts

• A generic class is shared by all its instances
regardless of its actual generic type.

GenericStack<String> stack1 = new GenericStack<>();

GenericStack<Integer> stack2 = new GenericStack<>();

• Although GenericStack<String> and
GenericStack<Integer> are two types, but there
is only one class GenericStack loaded into the
JVM

11/13/2018 CUNY | Brooklyn College 16

Restrictions on Generics

• Restriction 1: Cannot Create an Instance of
a Generic Type. (i.e., new E()).

• Restriction 2: Generic Array Creation is Not
Allowed. (i.e., new E[100]).

• Restriction 3: A Generic Type Parameter of
a Class Is Not Allowed in a Static Context.

• Restriction 4: Exception Classes Cannot be
Generic.

11/13/2018 CUNY | Brooklyn College 17

Questions?

• How does the Java compiler deal with
generic types?

• What are the restrictions?

11/13/2018 CUNY | Brooklyn College 18

