
CISC 3115 TY3

C23a: Generics: Motivation 
and Definition

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

11/13/2018 1CUNY | Brooklyn College



Outline

11/13/2018 CUNY | Brooklyn College 2

• Motivation of generics

• Define generic classes and methods

• Bounded generic type



Reuse, Reuse, and Reuse …

“If I have seen further it is 
by standing on the shoulders 
of Giants.”

-- Isaac Newton

11/13/2018 CUNY | Brooklyn College 3



Generics: Motivation

• To write code that can be applied to 
many data types

• e.g., if the algorithms is essentially the 
same, why should we write a second time?

• But, how do we do it? 

• Solution 1: use type hierarchy

• Solution 2: use “generics”

• To detect errors at compilation time 
other than at runtime by introducing 
“generics”

11/13/2018 CUNY | Brooklyn College 4



Solution 1: Use Type Hierarchy

• Consider the design of the Comparable 
interface

public interface Comparable {

public int compareTo(Object o);

}

• What’s the problem? 

11/13/2018 CUNY | Brooklyn College 5



Solution 2: Use “Generics”

• Consider the design of the Comparable 
interface

public interface Comparable<T> {

public int compareTo(T o);

}

• where “T” represents a formal generic type, 
which can be replaced later with an actual 
concrete type. 

11/13/2018 CUNY | Brooklyn College 6



Generics

• Generics is the capability to parameterize data 
types. 

• Generic instantiation: with this capability, one use 
generic types when defining a class or a method, and 
the generic types can be substituted using concrete 
types by the compiler.

• Be aware that “concrete” has a different meaning in 
the context of generics from “concrete” in concrete 
subtype in the context of inheritance. 

11/13/2018 CUNY | Brooklyn College 7



Generic Instantiation: Example

• Consider the design of the Comparable interface

public interface Comparable<T> {

public int compareTo(T o);

}

• And an implementation of Comparable<T> 

public class Shape implements Comparable<Shape> {

public int compareTo(Shape s);

}

where “T” is replaced by a concrete type “Shape”. 

11/13/2018 CUNY | Brooklyn College 8



Solution 2: Use “Generics”

• Consider the design of the Comparable 
interface

public interface Comparable<T> {

public int compareTo(T o);

}

• where “T” represents a formal generic type, 
which can be replaced later with an actual 
concrete type. 

• What’s the benefit? 

11/13/2018 CUNY | Brooklyn College 9



Generics: Benefits

• To write code that can be applied to 
many data types

• e.g., if the algorithms is essentially the 
same, why should we write a second time?

• But, how do we do it? 

• Solution 1: use type hierarchy

• Solution 2: use “generics”

• To detect errors at compilation time 
other than at runtime by introducing 
“generics”

11/13/2018 CUNY | Brooklyn College 10



Detecting Errors

• A generic class or method permits one to 
specify allowable types of objects that the 
class or method may work with. 

• If one attempts to use the class or method 
with an incompatible object, a compilation 
error occurs.

11/13/2018 CUNY | Brooklyn College 11



Questions?

• Concept of generic type and generic 
instantiation

• Benefit of using generic types. 

11/13/2018 CUNY | Brooklyn College 12



Defining Generic Classes and 
Interfaces
• Example: using ArrayList to design and 

implement a generic Stack data structure

11/13/2018 CUNY | Brooklyn College 13



Generic Methods

• Instance methods

• Static methods

11/13/2018 CUNY | Brooklyn College 14



Generic Methods

• Example using generic type “E”

public static <E> void print(E[] list) {

for (int i = 0; i < list.length; i++) 

System.out.print(list[i] + " ");

System.out.println();

}

• Compare it with the one using type hierarchy

public static void print(Object[] list) {

for (int i = 0; i < list.length; i++) 

System.out.print(list[i] + " ");

System.out.println();

}

11/13/2018 CUNY | Brooklyn College 15



Bounded Generic Type

• A generic type can be specified as a subtype 
of another type

• This generic type is then “bounded” (to a 
type)

11/13/2018 CUNY | Brooklyn College 16



Bounded Generic Type: Example

public static <E extends GeometricObject> boolean

equalArea(E object1, E object2) {

return object1.getArea() == object2.getArea();

}

public static void main(String[] args ) {

Rectangle rectangle = new Rectangle(2, 2);

Circle circle = new Circle (2);

System.out.println("Same area? " + equalArea(rectangle, circle));

}

11/13/2018 CUNY | Brooklyn College 17



Questions?

• Define generic classes and methods

• Use generic classes and methods

• Instance methods

• Static methods

• Bounded generic types

11/13/2018 CUNY | Brooklyn College 18


