
CISC 3115 TY3

C22a: Problem Solving using
Recursion

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

11/6/2018 1CUNY | Brooklyn College

Outline

• Characteristics of recursion

• Recursion as problem solving strategy

• Examples

• Recursive helper method/function

• Tail and non-tail recursion

11/6/2018 CUNY | Brooklyn College 2

Characteristics of Recursion

• All recursive methods have the following
characteristics:

• One or more base cases (the simplest case) are
used to stop recursion.

• Every recursive call reduces the original
problem, bringing it increasingly closer to a base
case until it becomes that case.

11/6/2018 CUNY | Brooklyn College 3

Recursion as Problem Solving
Strategy
• Break the problem into subproblems such

that one or more subproblems resembles the
original problem

• These subproblems resembling the original
problem is almost the same as the original
problem in nature with a smaller size.

• Apply the same approach to solve the
subproblem recursively to reach the base
case

11/6/2018 CUNY | Brooklyn College 4

Problem Solving Example: Print
Message Many Times
• Problem: print a message n times.

• Can we solve it using recursion?

• Original problem: print a message n times

• Subproblems with smaller size

• print a message 1 time

• print a message (n-1) times (the same problem as the
original problem, but smaller size)

• Base case: print the message 0 times (or 1 time)

11/6/2018 CUNY | Brooklyn College 5

Problem Solving Example: Print
Message Many Times: Solution
• Base case: n = 0 (how about the n = 1 base case? Which one yields better code?)

public class PrintMsg {

public static void main(String[] args) {

nPrintMsg("Hello, World!", 5);

}

public static void nPrintMsg(String msg, int n) {

if (n == 0) return; // base case

System.out.println(msg); // subproblem 1

nPrintMsg(msg, n-1); // subproblem 2

}

}

11/6/2018 CUNY | Brooklyn College 6

Problem Solving Example: Print
Message Many Times: Revisit
• Wait! Can we just write a loop to print a

message n times? (solving problem iteratively)

• Remarks

• However, it is sometimes easier to think recursively
to solve a complex problems.

• Many problems we solve iteratively can also be solved
recursively.

• Example: the palindrome problem (e.g., madam, nursesrun)

11/6/2018 CUNY | Brooklyn College 7

Problem Solving Example: Is It
a Palindrome?
• Problem: is a given string a palindrome?

• Recursive solution:

• 1) Compare the first and last character of the string.
If not equal, not palindrome; 2) otherwise, repeat for
the substring less the first and the last character
(the same problem whose size is the original size – 2)

• Base case: a single character or empty string, and
the single character string or the empty string is
always a palindrome.

11/6/2018 CUNY | Brooklyn College 8

Problem Solving Example: Is It
a Palindrome? Solution
• An example realization of the solution

public static boolean isPalindrome(String s) {

// base case

if (s.length() <= 1) return true;

// subproblem 1

if (s.charAt(0) != s.charAt(s.length()-1)) return false;

// subproblem 2

return isPalindrome(s.substring(1, s.length()-1));

}

11/6/2018 CUNY | Brooklyn College 9

Problem Solving Example: Is It
a Palindrome? Discussion
• Is the solution efficient, in particular, when the string is very long? Hint: a Java

string is immutable? How many string objects are being coreated?

public static boolean isPalindrome(String s) {

// base case

if (s.length() <= 1) return true;

// subproblem 1

if (s.charAt(0) != s.charAt(s.length()-1)) return false;

// subproblem 2

return isPalindrome(s.substring(1, s.length()-1));

}

11/6/2018 CUNY | Brooklyn College 10

Problem Solving Example: Is It
a Palindrome? Recursive Helper
• Rewrite it by introducing a new method that uses parameters to indicate

subproblem size

public static boolean isPalindrome(String s) {

return isPalindrome(s, 0, s.length()-1);

}

// The recursive helper method

public static boolean isPalindrome(String s, int beginIndex, int endIndex) {

if (endIndex - beginIndex <= 1) return true; // base case

if (s.charAt(beginIndex) != s.charAt(endIndex)) return false; // subproblem 1

return isPalindrome(s, beginIndex+1, endIndex-1); // subproblem 2

}

11/6/2018 CUNY | Brooklyn College 11

Problem Solving Example:
Selection Sort
• Problem: sort a list

• Recursive solution: divide the problem into
two subproblems

• 1. Find the smallest number in the list and swaps
it with the first number.

• 2. Ignore the first number and sort the
remaining smaller list recursively (subproblem is
the same problem as the original problem with
the size – 1).

11/6/2018 CUNY | Brooklyn College 12

Problem Solving Example:
Selection Sort: Solution
• The sample solution includes two realizations

• Sort integers

• Sort any objects with the Comparator interface

11/6/2018 CUNY | Brooklyn College 13

Problem Solving Example:
Searching
• Problem: search an item (using its key) in a sorted list

• Recursive solution: divide the problem into subproblems, one or more
are essentially the original problem

• 1. Find the middle element in the list

• 2. The list becomes three parts. Determine which part contains or may contain
the item. Search the item the part that may contain the item (the subproblem
identical to the original problem but with smaller size)

• Case 1: If the key is less than the middle element, recursively search the key in the
first half of the list.

• Case 2: If the key is equal to the middle element, the search ends with a match.

• Case 3: If the key is greater than the middle element, recursively search the key in
the second half of the array.

• Base case: the list becomes empty (not found); or it is the middle element
(found).

11/6/2018 CUNY | Brooklyn College 14

Problem Solving Example:
Searching: Implementation
• An example implementation using a helper method

public static int search(int[] numbers, int key) { return search(numbers, key, 0, numbers.length-1); }

private static int search(int[] numbers, int key, int beginIndex, int endIndex) {

int mid = (endIndex + beginIndex) / 2; // observe when mistakenly wrote - instead

if (beginIndex > endIndex) return - beginIndex - 1; // base case (not foudn)

if (numbers[mid] == key) return mid; // base case (found)

if (key < numbers[mid]) { // subproblem, the same problem but smaller size

return search(numbers, key, beginIndex, mid-1);

} else { // subproblem, the same problem but smaller size

return search(numbers, key, mid+1, endIndex);

}

}

11/6/2018 CUNY | Brooklyn College 15

Iteration or Recursion?

• Some problems appear to be easily solved using
iteration, while others recursion.

• Question: can you solve preceding examples using
iteration?

• Example problems (recursion is easier)

• Search files containing a word in a directory (the search
file problem, already discussed)

• Find directory size (the total size in bytes of all files
under a directory, a revision of the search file problem)

• Solve the “Tower of Hanoi” problem

• Quick sort

11/6/2018 CUNY | Brooklyn College 16

Problem Solving Example:
Directory Size
• Problem: to find the size of a directory, i.e.,

the sum of the sizes of all files in the
directory.

• The challenge: a directory may contain
subdirectories and files.

11/6/2018 CUNY | Brooklyn College 17

directory

...

1f

1

2f

1

mf

1

1d

1

2d

1

nd

1

...

Directory Size: Thinking
Recursively
• The size of the directory can be defined

recursively as follows,

11/6/2018 CUNY | Brooklyn College 18

)(...)()()(...)()()(2121 nm dsizedsizedsizefsizefsizefsizedsize +++++++=

Problem Solving Example: Tower
of Hanoi
• Problem:

• There are n disks labeled 1, 2, 3, . . ., n, and three
towers labeled A, B, and C.

• All the disks are initially placed on tower A.

• No disk can be on top of a smaller disk at any time.

• Only one disk can be moved at a time, and it must be
the top disk on the tower.

• See
https://liveexample.pearsoncmg.com/dsanimatio
n/TowerOfHanoi.html

11/6/2018 CUNY | Brooklyn College 19

https://liveexample.pearsoncmg.com/dsanimation/TowerOfHanoi.html

Examine it at Size = 3

11/6/2018 CUNY | Brooklyn College 20

How about Large Size?

• Starting with n disks on tower A. The Tower
of Hanoi problem can be decomposed into
three subproblems:

• Move n-1 disks from tower A to tower C

• Move disk n from tower A to tower B

• Move n-1 disks from tower C to tower B

11/6/2018 CUNY | Brooklyn College 21

How about Large Size?

11/6/2018 CUNY | Brooklyn College 22

Questions?

• Problem solving using recursion

• Divide big problem into smaller subproblems
some of which are the same problem as the
original one with smaller size

• Examples

• Sorting, searching, and others

• More examples in the textbook

11/6/2018 CUNY | Brooklyn College 23

Tail Recursion

• A recursive method is said to be tail
recursive if there are no pending operations
to be performed on return from a recursive
call.

• Tail recursions can be realized by complier
efficiently.

11/6/2018 CUNY | Brooklyn College 24

Tail and Non-tail Recursion:
Compute Factorial

Non-tail recursion
public static int factorial(int n) {

if (n == 0) { // base case

return 1;

} else { // recursive call or method invocation

// non-tail recursion, because we have to multiple
factorial(n-1) by n, a pending operation

return n * factorial(n - 1);

}

}

Tail recursion
public static int factorial(int n) {

return factorial(n, 1);

}

private static int factorial(int n, int result) {

if (n == 0) { // base case

return result;

} else { // recursive call

// tail recursion, no pending operation after
returning from the recursive call

return factorial(n - 1, n * result);

}

}

11/6/2018 CUNY | Brooklyn College 25

Questions

• Concept of tail and non-tail recursions

• Can you identify non-tail/tail-recursive
methods in preceding examples?

• Write tail-recursive methods

11/6/2018 CUNY | Brooklyn College 26

