CISC 3115 TY3

C21la: Recursion
Hui Chen

Department of Computer & Information Science
CUNY Brooklyn College



Outline

* Motivation: finding file

* Base case and recursive subproblem

» Simple examples using math functions

» Call stacks during recursive method calls



Motivations: Finding File

* Problem: write a program that finds all the
files under a directory that contains a
particular word.



Motivations: Finding File:
Observation 1: java.io.File

* Problem: write a program that finds all the
files under a directory that contains a
particular word.

* Observation
 What have discussed about File I/0?

« java.io.File

 The directory may contain a subdirectory that
may contain a subdirectory that may contain ...


https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/File.html

The java.io.File APT

11/6/2018

javaio.File

+File(pathname: String)

+File(parent: String, child:

+File(parent: File, child: String)

+exists(): boolean
+canRead(): boolean
+canWrite(): boolean
+isDirectory(): boolean
+isFile(): boolean
+isAbsolute(): boolean
+isHidden(): boolean

+getAbsolutePath(): String

+getCanonicalPath(): String

+getName(): String

+getPath(): String
+getParent(): String
+lastModified(): Tong

+length(): Tlong
+listFile(): File[]

Creates a File object for the specified path name. The path name may be a
directory or a file.

String) Creates a File object for the child under the directory parent. The child may be
a file name or a subdirectory.

Creates a Fi1le object for the child under the directory parent. The parent is a
FiTle object. In the preceding constructor, the parent is a string.

Returns true if the file or the directory represented by the File object exists.
Returns true if the file represented by the File object exists and can be read.
Returns true if the file represented by the File object exists and can be written.
Returns true if the FiTe object represents a directory.

Returns true if the FiTe object represents a file.

Returns true if the FiTle object is created using an absolute path name.

Returns true if the file represented in the File object is hidden. The exact
definition of hidden is system-dependent. On Windows, you can mark a file
hidden in the File Properties dialog box. On Unix systems, a file is hidden if
its name begins with a period(.) character.

Returns the complete absolute file or directory name represented by the File
object.

Returns the same as getAbsolutePath () except that it removes redundant
names, such as "." and "..", from the path name, resolves symbolic links (on
Unix). and converts drive letters to standard uppercase (on Windows).

Returns the last name of the complete directory and file name represented by

test.dat
Returns the complete directory and file name represented by the File object.

Returns the complete parent directory of the current directory or the file
represented by the File object. For example, new
File("c:\\book\\test.dat").getParent() returns c:\book.

Returns the time that the file was last modified.
Returns the size of the file, or 0 if it does not exist or if it is a directory.
Returns the files under the directory for a directory File object.

+delete(): boolean

+renameTo(dest: File): boolean

+mkdir(): boolean

+mkdirs(): boolean

Deletes the file or directory represented by this Fi1e object.The method returns
true if the deletion succeeds.

Renames the file or directory represented by this Fi1e object to the specified name
represented in dest. The method returns true if the operation succeeds.

Creates a directory represented in this File object. Returns true if the the directory is
created successfully.

Same as mkd1i r() except that it creates directory along with its parent directories if
the parent directories do not exist.

CUNY | Brooklyn College

the File object. For example,new File("c:\\book\\test.dat").getName() returns

For example,new File("c:\\book\\test.dat").getPath() returns c:\book\test.dat.



https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/File.htmllistFiles()

Motivations: Finding File: First
Try
* List files
File[] fileArray = dir.listFiles();
for (File f: fileArray) {
if (containWord(f, “for")) {
System.out.printin(f.toString()):.

}
}



Motivations: Finding File:
Observation 2: Subdirectories

* Problem: write a program that finds all the files
under a directory that contains a particular
word.

« Observation

 What have discussed about File I/0O?

e java.io.File

« The directory may contain a subdirectory

* What if we also want to list all the files that contains
the word under the subdirectory


https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/File.html

Motivation: Finding File: Second
Try

« List files also in the subdirectory
File[] fileArray = dir.listFiles();
for (File f: fileArray) {
if (f.isDirectory()) {
listFilesNextLevel(f, target);
}else{
if (containWord(f, target)) {
System.out.printin(f.toString()):

}
}
}



Motivations: Finding File:
Observation 3: Subdirectories

* Problem: write a program that finds all the files
under a directory that contains a particular word.

* Observation
 What have discussed about File I/0O?

e java.io.File

 The directory may contain a subdirectory that may contain
a subdirectory that may contain a subdirectory that may ...

 What if we also want to list all the files that contains the
word under any of those subdirectories.


https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/File.html

listFile and listFileNextLevel:
Observation (Observation 4)?

listFile
File[] fileArray = dir.listFiles();

for (File f: fileArray) {
if (f.isDirectory()) {
listFilesNextLevel(f, target);
}else {
if (containWord(f, target)) {

System.out.printin(f.toString()):

}
}

listFileNextlLevel
File[] fileArray = dir.listFiles();

for (File f: fileArray) {

if (f.isDirectory()) {
// do nothing

} else {
if (containWord(f, target)) {

System.out.printin(f.toString()):;

}

}



Finding Files: Solution using
Recursion

« listFile and listFileNextFile are in effect identical: we should apply the same
method to all the directories, which is actually an example of recursion.

* Finding files using recursion in the nut shell
void listFiles(File dir, String target) {
File[] fileArray = dir.listFiles();
for (File f: fileArray) {
if (f.isDirectory()) {
listFiles (f, target);

}else {
// deal with file

}



Finding Files: Solution using
Recursion: Implementation

* An example implementation
void listFiles(File dir, String target) throws FileNotFoundException {
File[] fileArray = dir.listFiles();
for (File f: fileArray) {
if (f.isDirectory()) {
listFiles(f, target);
}else {
if (f.canRead() && containWord(f, target)) {
System.out.printin(f.toString()):
}
}
}
}



Concept of Recursion

» Concept of recursion

 To use recursion here is to program using
recursive method, i.e., to use methods that
invoke themselves

« Example

* listFiles invokes listFiles itself



Recursion: Remark

* Recursion is a problem solving approach
* a divide-and-conquer approach

 where we divide a large problem into problems of the same
nature but smaller size.

« Example

 Problem: find a word in files recursively in a directory

 The directory may contain a subdirectory. To find the word in
files in the subdirectory is identical to find a word in the
directory

 The subdirectory may contain another subdirectory ..



Questions

* Motivation for recursion
» Concept of recursion and recursive method

* More examples follow ...



Problem Solving Using Recursion

* Many problems can be divided into smaller
but the same problem of smaller size.

« Examples

* Recursive mathematical functions, e.q.,
Factorials, Fibonacci Numbers

* Sorting
* Searching



Case Studies: Recursive
Mathematical Functions

» Take a look at two recursive mathematical
functions

e Factorials

* Fibonacci numbers
* Important concepts
* Base case

« Recursive calls and call stack

* Performance implications



Factorials

* Factorials
« f(n)=nl=n(n-1) (n-2) ..1

 which can be written as a recursive
mathematical function

« f(n) = nl = n (n-1! = n f(n-1)
* That is
« f(n) = n f(n-1)
. £(0) = 1
* where f(0) =1 (or Ol = 1) is the base case.




Base Case

* Base case is important

* Otherwise, where do we stop (without the
base case)? e.g., consider

+f(3)=31=3f(2)=32f(1)=321f(0) =32
10f(-1)=3210-1f(-2) ..

» The base case makes sure that we stop the
recursive process somewhere.



Design Factorial Recursive
Method

« Observe:
 Recursive function: f(n) = n* f(n-1) whenn>0
* Bae case: f(0) =1

* Desigh method Factorial(n: int):

 f(n) = n * f(n-1): when computing f(n), we invoke
Factorial(n) where we compute n * Factorial(n-1)
where we invoke the Factorial method recursively.

* £(0) = 1: we stop invoking the Factorial method when
his Q.



Fibonacci Numbers

* Fibonacci numbers
 Recurrence function
f(n) = f(n-1) + f(n-2) when n>=2
* Base case
f(0)=0
f(1) =1



Design Fibonacci Recursive
Method

» fibonacci(n) is computed as fibonacci(n-
1)*fibonacci(n-2) when n>=2 based on

« Recurrence function

f(n) = f(n-1) + f(n-2) when n>=2

» fibonacci(0) should return O and fibonacci(1)
should return 1 according to

* Base case
f(0)=0
f(1) = 1



Recursive Calls and Call Stack

factorial(4) = 4 * factorial(3)
=4 * (3 * factorial(2))
=4 * (3 * (2 * factorial(1)))
=4*(3*(2*(1* factorial(0))))
=4*(3*(2*(1*1))
=4*(@3*(2*1))
=4*(3*2)
= 4% (6)
=24

Observe the animation from the publisher and the author of the
textbook.



. .
Trace Recursive factorial

r

factorial(4)

Space Required
for factorial(4)

24



. .
Trace Recursive factorial

factorial(4)

l Step 0: executes factorial(4)
return 4 * factorial(3)———---"""'lII _

Space Required
for factorial(3)

Space Required
for factorial(4)

Main method

25



. .
Trace Recursive factorial

factorial(4)

Step 0: executes factorial(4)

Ireturn 4* 1}‘actoria|(3)I
lStep 1: execu

return 3 "‘»factoriaI(Z)I

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main method

26



. .
Trace Recursive factorial

_factorial(4)

Step 0: executes factorial(4)

Ireturn 4* 1}‘actoria|(3)I
lStep 1: executes factorial

return 3 "‘»factoriaI(Z)I

Step 2: exggetes factorial(2)

Stack

Ireturn 2 * factorial(1)

Space Required
for factorial(1)

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main method

27



. .
Trace Recursive factorial

factorial(4)

Step 0: executes factorial(4)

' Ireturn 4* factorial(3)I
lStep 1: executes factorial(3)

“return 3 * factorial(2)I
ey
lStep 2: executes fa

turn 2 * jactorial(l)l

Step 3: ey€cutes factorial(1)

return 1 * factolriaI(O)I

28

Stack

Space Required
for factorial(0)

Space Required
for factorial(1)

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main method




Trace Recursive factorial

_factorial(4)

Step 0: executes factorial(4)

return 4 * factorial(3)I

lStep 1: executes factorial(3)

return 3 * factorial(2)I

Step 2: executes facto

return 2 * factorial(l)I

Step 3: exec

“return 1 * facto iaI(O)I
Steg/4d: executes factorial(0)

return 1

29

Stack

Space Required
for factorial(0)

Space Required
for factorial(1)

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main method




Trace Recursive factorial

_factorial(4)

Step 0: executes factorial(4)

return 4 * factorial(3)I

lStep 1: executes factorial(

return 3 * factorial(2)I

Step 2: exe

Ireturn 2 * factori

tep 3: executes factorial(1)

1 * factorial(0)
Step 4: executes factorial(0)

‘ret

Step 5: return 1
return 1

30

Stack

Space Required
for factorial(0)

Space Required
for factorial(1)

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main method




. .
Trace Recursive factorial

_factorial(4)

Step 0: executes factorial(4)

return 4 * factorial(3)I

lStep 1: executes fac

return 3 * 1‘actoria|(2)I

. executes factorial(2)

Stack

2* factorial(l)I

Step 3: executes factorial(1)

Space Required
for factorial(1)

Step 6: return 1

I 1
return 1 * factorial(0) Space Required
for factorial(2)
Step 4: executes factorial(0 5 Jired
Step 5: return 1 p (0) pace R
return 1 e ectoraitey

Main method

31



. .
Trace Recursive factorial

_factorial(4)

Step 0: executes factorial(4)

return 4 * factorial(3)I

Step 2: executes factorial(2
Step 7: return 2 P )

Stack

return 2 * factorial(l)I

Step 6: return 1 Step 3: executes factorial(1)

I 1 .
return 1 * factorial(0) Space Required

for factorial(2)

Step 4: executes factorial(0) Space Required

for factorial(3)

Step 5: return 1

Space Required
return 1 for factorial(4)

Main method

32



. .
Trace Recursive factorial

_factorial(4)

Step 0: executes factorial(4

I
return 4 * f

Step 8: return 6 lStep 1: executes factorial(3)

return 3 * 1‘actoria|(2)I

Step 2: executes factorial(2
Step 7: return 2 P )

Stack

return 2 * factorial(l)I

Step 6: return 1 Step 3: executes factorial(1)

return 1 * facto iaI(O)I

: i _

Step 5: return 1 Step 4: executes factorial(0) Sf‘éiiic?;?;'{;
S uired

return 1 ece Requte

Main method

33



. .
Trace Recursive factorial

factorial(4

Step 0: executes factorial(4
Step 9: return 24 P @

return 4 * factorial(3)I

Step 8: return 6 lStep 1: executes factorial(3)

return 3 * 1‘actoria|(2)I

Step 2: executes factorial(2)
Step 7: return 2 stock

return 2 * factorial(l)I

Step 6: return 1 Step 3: executes factorial(1)

return 1 * facto iaI(O)I

Step 5: return 1 Step 4: executes factorial(0)

Space Required
for factorial(4)

return 1

Main method

34



factorial(4) Stack Trace

Space Required
for factorial(4)

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(0)

Space Required
for factorial(4)

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(1)

Space Required
for factorial(2)

Space Required
for factorial(4)

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

Space Required
for factorial(3)

Space Required
for factorial(4)

Space Required
for factorial(3)

Space Required
for factorial(4)

Space Required
for factorial(3)

Space Required
for factorial(4)

Space Required
for factorial(4)

35

Space Required
for factorial(4)




Questions?

» Compute recursive mathematical functions
using recursive methods

 Call stacks of recursive method invocation



